假设我们有这样的数据实例:
[
[15, 20, ("banana","apple","cucumber"), ...],
[91, 12, ("orange","banana"), ...],
...
]
我想知道如何编码这些数据点的第三个元素。对于多个特征值,我们可以使用 sklearn 的OneHotEncoder,但据我所知,它无法处理不同长度的输入。
这是我尝试过的:
X = [[15, 20, ("banana","apple","cucumber")], [91, 12, ("orange","banana")]]
ct = ColumnTransformer(
[
("genre_encoder", OneHotEncoder(), [2])
],
remainder='passthrough'
)
print(ct.fit_transform(X))
这只会输出
[[1.0 0.0 15 20]
[0.0 1.0 91 12]]
正如预期的那样,因为元组被处理为可以表示此功能的可能值。
我们不能直接嵌入我们的特征(比如[15, 12, "banana", "apple", "cucumber"]),因为
- 我们不知道我们将拥有多少个此功能的实例(两个?三个?)
- 每个位置都将被解释为一个自己的特征,因此如果我们
banana在一个数据点的第一个标称槽中,在第二个标称槽中的第二个,它们将不计入一个特征可以体现的相同“值池”
例子:
X = [["banana","apple","cucumber"], ["orange","banana", "cucumber"]]
enc = OneHotEncoder()
print(enc.fit_transform(X).toarray())
[[1. 0. 1. 0. 1.]
[0. 1. 0. 1. 1.]]
此表示包含 5 个插槽而不是 4 个,因为第一个插槽被解释为使用bananaor orange,第二个插槽被解释为appleorbanana并且最后一个只有选项cucumber。
(这也不能解决每个数据点具有不同数量的特征值的问题。并且用替换空的None也不能解决问题,因为这样会None面临这种位置模糊。)
知道如何编码那些可以采用多个值并由不同数量的元素组成的“Multi-Muliti”特征吗?先感谢您!