我一直在探索不同的正则化方法,并观察到最常见的方法是使用 Dropout Layers 或 L1/L2 正则化。我已经看到了许多关于组合或单独的正则化方法是否有意义的争论。
就我而言,我已经实现/集成了两种方法(组合和单独)。为此,我在实际组合时看到了有希望的结果,因为它帮助我不总是完全过度拟合我的模型,同时总体上提高了我的模型的 r2 分数。
问题:
将 L1/L2 正则化与 Dropout 层结合使用更好,还是单独使用它们更好?
示例代码:
def model_build(x_train):
# Define Inputs for ANN
input_layer = Input(shape = (x_train.shape[1],), name = "Input")
#Create Hidden ANN Layers
dense_layer = BatchNormalization(name = "Normalization")(input_layer)
dense_layer = Dense(128, name = "First_Layer", activation = 'relu', kernel_regularizer=regularizers.l1(0.01))(dense_layer)
#dense_layer = Dropout(0.08)(dense_layer)
dense_layer = Dense(128, name = "Second_Layer", activation = 'relu', kernel_regularizer=regularizers.l1(0.00))(dense_layer)
#dense_layer = Dropout(0.05)(dense_layer)
#Apply Output Layers
output = Dense(1, name = "Output")(dense_layer)
# Create an Interpretation Model (Accepts the inputs from branch and has single output)
model = Model(inputs = input_layer, outputs = output)
# Compile the Model
model.compile(loss='mse', optimizer = Adam(lr = 0.01), metrics = ['mse'])
#model.compile(loss='mse', optimizer=AdaBound(lr=0.001, final_lr=0.1), metrics = ['mse'])