我正在CNNKeras 中创建一个model.summary()显示:
Using TensorFlow backend.
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 62, 62, 32) 896
_________________________________________________________________
activation_1 (Activation) (None, 62, 62, 32) 0
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 31, 31, 32) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 29, 29, 64) 18496
_________________________________________________________________
activation_2 (Activation) (None, 29, 29, 64) 0
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 14, 14, 64) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 12, 12, 64) 36928
_________________________________________________________________
activation_3 (Activation) (None, 12, 12, 64) 0
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 6, 6, 64) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 4, 4, 64) 36928
_________________________________________________________________
activation_4 (Activation) (None, 4, 4, 64) 0
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 2, 2, 64) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 256) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 256) 0
_________________________________________________________________
dense_1 (Dense) (None, 128) 32896
_________________________________________________________________
activation_5 (Activation) (None, 128) 0
_________________________________________________________________
dropout_2 (Dropout) (None, 128) 0
_________________________________________________________________
dense_2 (Dense) (None, 17) 2193
_________________________________________________________________
activation_6 (Activation) (None, 17) 0
=================================================================
Total params: 128,337
Trainable params: 128,337
Non-trainable params: 0
输入是大小的图像. 如何确定最大池化层是否过多、过少或恰到好处?这个页面解释了它,但我无法从 Kera 的输出中得到它。