我一直在使用来自 machinelearningmastery 的Keras 回归脚本,我想将模型保存为 .h5 文件。
Machinelearningmastery 还有另一个保存模型/泡菜的教程,但是脚本是用 Keras 中的model.fit()方法编写的……但是我使用的脚本是通过调用函数来定义模型的。
有人可以告诉我如何将此模型保存为 .h5df 吗?
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
import matplotlib.pyplot as plt
import math
from sklearn.preprocessing import MinMaxScaler
# load dataset
dataset = pd.read_csv("joinedRuntime2.csv", index_col='Date', parse_dates=True)
print(dataset.shape)
print(dataset.dtypes)
print(dataset.columns)
# shuffle dataset
df = dataset.sample(frac=1.0)
# split into input (X) and output (Y) variables
X = np.array(df.drop(['kWh'],1))
Y = np.array(df['kWh'])
def wider_model():
# create model
model = Sequential()
model.add(Dense(20, input_dim=7, kernel_initializer='normal', activation='relu'))
#model.add(Dense(28, kernel_initializer='normal', activation='relu'))
#model.add(Dense(21, kernel_initializer='normal', activation='relu'))
#model.add(Dense(14, kernel_initializer='normal', activation='relu'))
model.add(Dense(10, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss='mean_squared_error', optimizer='adam')
return model
# fix random seed for reproducibility
seed = 7
np.random.seed(seed)
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=wider_model, epochs=200, batch_size=5, verbose=0)))
pipeline = Pipeline(estimators)
kfold = KFold(n_splits=10, random_state=seed)
results = cross_val_score(pipeline, X, Y, cv=kfold)
print("Wider: %.2f (%.2f) MSE" % (results.mean(), results.std()))
print("RMSE", math.sqrt(results.std()))