一般来说,我是 ANN 和 DL 的初学者。我有一个以二维为目标的回归任务,我的数据集只有 46 个样本(我认为是小数据集)。我尝试了下面的代码,它只使用一个正常工作的输出进行回归。
当我更改为二维回归时,我的损失函数等于 NaN。我试图更改优化器并修复辍学率,但没有任何改变,有什么解决方案吗?
import numpy
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
#load data
dataframe = pandas.read_excel("data1.xlsx")
dataframe.isnull().any()
dataset = dataframe.values
X = dataset[:, 0:5]
Y = dataset[:,5:7]
def baseline_model():
#create model
model = Sequential()
model.add(Dense(10, input_dim=5, kernel_initializer='normal', activation
='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, kernel_initializer='normal'))
#compile model
#model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
model.compile(loss='mean_squared_error', optimizer='adam')
return model
#fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
estimators=[]
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=50, batch_size=32, verbose=0)))
pipeline = Pipeline(estimators)
kfold = KFold(n_splits=10, random_state = seed)
results = cross_val_score(pipeline, X, Y, cv=kfold)
print ("Result: %.2f (%.2f) MSE" %(results.mean(), results.std()))