MinMaxScaler 使我的预测变平

数据挖掘 深度学习 统计数据 可视化 数据科学模型 预测
2022-02-14 09:51:28

我正在尝试进行单变量预测。但是当我尝试使用 MinMax Scaler 时,我的预测是平的(尝试使用不同的激活函数)但是当我使用 Standart Scaler 时,我的预测就很好。这怎么可能??

图片

我的模型架构:

EPOCHS = 1000

steps = int( np.ceil(x_train_multi.shape[0] / batch_size) )
val_steps=int( np.ceil(x_val_multi.shape[0] / batch_size) )


multi_step_model = tf.keras.models.Sequential()
multi_step_model.add(LSTM(128,activation="relu",return_sequences=False,input_shape=x_train_multi.shape[-2:]))
multi_step_model.add(Dropout(0.4))
multi_step_model.add(tf.keras.layers.Dense(future_target)) # for 72 outputs
multi_step_model.compile(optimizer=tf.keras.optimizers.Adam(), loss='mae')

multi_step_model.summary()
print(train_data_multi)

multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,
                                          steps_per_epoch=steps,
                                          validation_data=val_data_multi,
                                          validation_steps=val_steps)
```
0个回答
没有发现任何回复~