我有一个关于区间变量的基本问题,我在不同的教程中搜索过它,但仍然不确定。
“区间尺度是有顺序的,两个值之间的差异是有意义的。” 来自graphpad.com
“区间变量是一种测量变量,用于定义沿刻度测量的值,每个点彼此之间的距离相等。它是两种数值变量之一,是序数变量的扩展。 " 来自formmpl.us
我的问题是关于上面最后一句话,它指出区间变量是数字的并且是序数的扩展。如果我们有如下属性“年龄”:
然后根据上面给定的定义,“年龄”必须是一个区间属性。但是,它似乎不是比数字更序数吗?
我有一个关于区间变量的基本问题,我在不同的教程中搜索过它,但仍然不确定。
“区间尺度是有顺序的,两个值之间的差异是有意义的。” 来自graphpad.com
“区间变量是一种测量变量,用于定义沿刻度测量的值,每个点彼此之间的距离相等。它是两种数值变量之一,是序数变量的扩展。 " 来自formmpl.us
我的问题是关于上面最后一句话,它指出区间变量是数字的并且是序数的扩展。如果我们有如下属性“年龄”:
然后根据上面给定的定义,“年龄”必须是一个区间属性。但是,它似乎不是比数字更序数吗?
这是区间的正式定义(来自Wikipedia):
在数学中,(实)区间是一组实数,其中包含位于该组任意两个数之间的所有实数。例如,满足 0 ≤ x ≤ 1 的数字 x 的集合是一个包含 0、1 以及介于两者之间的所有数字的区间。
这个定义并没有告诉我们为了 ML 目的如何表示一个区间……这很正常 :)
出于 ML 的目的,我们需要决定一个合适的表示,并且很少有一种数学上纯粹或独特的方式来表示一个数学对象。您的困惑来自您提到的站点提出了自己的表示,即他们考虑了间隔的特定定义,大概是因为它适合他们的目标。特别是第二个明确地将“区间变量”定义为特定语言中的对象,其约束与上述定义无关。
现在回答您的问题:间隔不是原子的,因为它不是单个值。所以严格来说,它既不是数字也不是序数。
但是您可能对这个答案不太满意,因为您仍然希望能够使用这种功能。如何?像往常一样,这取决于:
相关的 Wikipedia 页面是Level of measure。它关于测量间隔水平的部分有许多有启发性的例子和一个不好的例子,即摄氏刻度。它以不足开始,以超出必要的方式结束。
最初,它“试图”成为一个区间尺度,即对差异进行有意义的比较。端点 0 °C 和 100 °C 定义明确,但 50 °C 的含义取决于温度计使用的材料。长期以来,它是水银,它的热膨胀被任意定义为线性。今天,温度被定义为热力学温度(每个自由度的平均能量)和等于开氏度的摄氏度,50°C 发生了少量变化。
只是由于这种变化,可以说从 0°C 到 50°C 的区间与 50°C 和 100°C 之间的差异具有相同的大小。
但不仅如此:声明 100 °C 比 0 °C 热 373.15/273.15 倍是有效的,因为绝对零 (0 K) 已明确定义:即使是最弱的振荡器也处于基态。这将热力学温度限定为比率尺度,比区间尺度更高的测量水平。
编辑:现在到你原来的问题,
它似乎不是比数字更序数吗?
不,年龄间隔有一个有意义的大小,而在序数尺度上,间隔大小是没有意义的。请记住,这些是测量级别,而不是评估。