我的主要问题是关于增强。
如果我处理增强,我相信它总是比更少的数据更好,
但在我的情况下,验证准确性会下降
训练:7000 张图片,验证:3000 张图片:验证准确度:0.89
训练:40000 张图片,验证:17990 张图片:验证准确度:0.85
我的扩充代码
def data_augmentation_folder(trainImagesPath,saveDir):
#X_train=load_training_data(trainImagesPath,"train")
print("=====================================================")
X_train = cleanData(trainImagesPath)
X_train = np.array(X_train)
print(X_train[0].shape)
for i in range(5):
#print(i)
datagen = ImageDataGenerator(rotation_range=15,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.01,
zoom_range=[0.9, 1.25],
horizontal_flip=True,
vertical_flip=False,
fill_mode='reflect',
data_format='channels_last',
brightness_range=[0.5, 1.5])
if i==1:
datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
#zoom_range=0.2
)
if i==2:
datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=100,
width_shift_range=0.1,
height_shift_range=0.1,
#zoom_range=0.2
)
elif i==3:
datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
elif i==4:
datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.1,
rotation_range=80,
zoom_range=0.1,
horizontal_flip=True,
brightness_range=[0.5,1.5])
datagen.fit(X_train)
for x, y in datagen.flow(X_train, np.arange(X_train.shape[0]),shuffle=True, save_to_dir=saveDir,save_format='jpg',save_prefix='aug'):
#print(y)
assert x.shape[1:] == X_train.shape[1:]
break
问题
在这种情况下,即使我进行了扩充,验证也会下降?
当您进行增强时,您需要担心什么?