我正在使用 GridSearchCV 来调整回归决策树的超参数。当我这样做时,我得到 mean_test_score 但我认为它会返回平均 MSE,因为它是一个回归量。如何解释 mean_test_score?有没有办法调整 GridSearchCV 使其返回平均 MSE?
这是我的代码
tree_reg = GridSearchCV(DecisionTreeRegressor(criterion="mse"), {
"min_samples_split":[2,3,4],
"min_samples_leaf":[1,2,3]
}, cv=5, return_train_score=False)
tree_reg.fit(X, y)
pd.DataFrame(tree_reg.cv_results_)
>>> params split0_test_score .... mean_test_score
{"min_samples_leaf":2, 0.998782 0.9989933
"min_samples_split":3}
{"min_samples_leaf":2, 0.998823 0.998930
"min_samples_split":4}
...
mean_test_score 是什么意思?