我使用 SVM.SVC 函数进行分类。但是当我想计算加权和未加权平均准确率时,我无法访问混淆矩阵。因为 svm.SVC.score 只提供分类器准确率百分比。如何计算 WAR 和 UAR?
您可以在下面找到我的部分脚本:
'''
scaler = StandardScaler()
scaler.fit(trainX)
trainXsc = scaler.transform(trainX)
testXsc = scaler.transform(testX)
pca = KernelPCA(n_components=j, kernel="sigmoid", random_state=1)
pca.fit(trainXsc) # fit pca kernel with train data
trainXtr = pca.transform(trainXsc) # transform FV with PCA and dimension reduction
testXtr = pca.transform(testXsc)
svmObject = svm.SVC(C=2.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True,
probability=False, tol=0.001, cache_size=200, class_weight=None,
verbose=False, max_iter=-1, decision_function_shape='ovo', random_state=None)
# SVM Kernel Function
svmObject.fit(trainXtr, trainY) # train SVM kernel with train FV
result = svmObject.score(testXtr, testY)
'''