我已经训练了一个 4 层神经网络
model = Sequential()
#get number of columns in training data
n_cols = X_train.shape[1]
#add model layers
model.add(Dense(8, activation='relu', input_shape=(n_cols,)))
model.add(Dense(8, activation='relu'))
model.add(Dropout(rate = 0.05))
model.add(Dense(8, activation='relu'))
model.add(Dense(1))
#adam = optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
model.compile(optimizer='adam', loss='mae')
history = model.fit(X_train, y_train, epochs= 200, validation_split=0.2, batch_size=128)
