我试图了解 XGBoost 的模型转储输出。我想逐步了解模型是如何得出它的预测的。为了简化,我训练了一个具有 1 个树和 1 个最大深度的模型,并且正如预期的那样,所有记录都得到两个预测之一,因为它有一个拆分 - 值是 {0.5386398434638977, 0.5011891722679138}。但是,当我查看模型转储时,我看到以下内容
booster[0]:
0:[f40<70.5] yes=1,no=2,missing=1
1:leaf=0.00475667231
2:leaf=0.154868156
我不知道如何以一种对预测有意义的方式来解释这一点。我错过了什么?谢谢!