我有一个已知 pdf x 的随机向量,我试图预测一些行为 y。我创建了一个包含 (X,y) 的数据集,其中 X 是 VA X 和 y = (y1,y2) 的 D 实现的向量。也就是说,对于每个实例,我都有一个输入向量 D 和一个输出向量 y。我试过:
from tensorflow import keras
model = keras.models.Sequential([
keras.layers.Dense(300, input_shape=(D,), activation="relu"),
keras.layers.Dense(300, input_shape=(D,), activation="relu"),
keras.layers.Dense(100, input_shape=(D,), activation="relu"),
#keras.layers.Dense(10, activation="relu")
keras.layers.Dense(2)
])
model.summary()
model.compile(loss='mean_squared_error', optimizer="adam")
history = model.fit(X_train, y_train, epochs=30, validation_data= (X_val, y_val))
在训练中:
Epoch 2/252 \\
252/252 [==============================] - 0s 965us/sample - loss: 67222078.7937 - val_loss: 99721252.0000
Epoch 2/252
252/252 [==============================] - 0s 325us/sample - loss: 66736292.6984 - val_loss: 99545232.0000
Epoch 3/252
252/252 [==============================] - 0s 246us/sample - loss: 64592091.8095 - val_loss: 99156788.0000
...
Epoch 252/252
252/252 [==============================] - 0s 305us/sample - loss: 23.6345 - val_loss: 92329540.0000
80/80 [==============================] - 0s 143us/sample - loss: 29423635.9000
损失和 val_loss 太糟糕了。谁能给我一个见解?