我很高兴地创建了我的第一个 NN 并通过GridSearchCV. 我只是不知道下一步该怎么做。我是否必须用GridSearchCV()显示的最佳参数再次拟合它?有没有一种优雅的方式来做到这一点?否则,如何进行?
def create_model(...
model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['accuracy'])
return model
model = KerasRegressor(build_fn=create_model, verbose=0)
> hypparas
{'batch_size': [2, 6], 'optimizer': ['Adam', 'sgd'], 'opt_par': [0.5, 0.8]}
GridSearchCV(estimator=model
, param_distributions=hypparas
, n_jobs=1
, n_iter=20
, cv=3
)
grid_result = grid_obj.fit(X_train1, y_train1, callbacks = [time_callback])
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_), "\n")
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
Best: -0.941568 using {'optimizer': 'Adam', 'opt_par': 0.8, 'batch_size': 2}
-1.725617 (0.620383) with: {'optimizer': 'Adam', 'opt_par': 0.5, 'batch_size': 2}
-1.595137 (0.224487) with: {'optimizer': 'sgd', 'opt_par': 0.5, 'batch_size': 2}
-0.941568 (0.149151) with: {'optimizer': 'Adam', 'opt_par': 0.8, 'batch_size': 2}
-1.338372 (0.523434) with: {'optimizer': 'sgd', 'opt_par': 0.8, 'batch_size': 2}
-1.094907 (0.121018) with: {'optimizer': 'Adam', 'opt_par': 0.5, 'batch_size': 6}
-1.588476 (0.569475) with: {'optimizer': 'sgd', 'opt_par': 0.5, 'batch_size': 6}
-1.443133 (0.342028) with: {'optimizer': 'Adam', 'opt_par': 0.8, 'batch_size': 6}
-1.275414 (0.331939) with: {'optimizer': 'sgd', 'opt_par': 0.8, 'batch_size': 6}