我有一个社交媒体帖子数据集,想预测随着时间的推移它将收到多少“赞”。
+---------+----------------+-----------+----------------+-----+-------+
| Post_id | Timestamp | Follows | Comments_count | ... | Likes |
+---------+----------------+-----------+----------------+-----+-------+
| 01 | 12-04-16 14:00 | 34 | 4 | | 23 |
+---------+----------------+-----------+----------------+-----+-------+
| 01 | 12-04-16 14:35 | 35 | 7 | | 34 |
+---------+----------------+-----------+----------------+-----+-------+
| | ... | | | | |
+---------+----------------+-----------+----------------+-----+-------+
| 02 | 12-04-16 14:02 | 134 | 5 | | 36 |
+---------+----------------+-----------+----------------+-----+-------+
| 02 | 12-04-16 14:45 | 136 | 23 | | 123 |
+---------+----------------+-----------+----------------+-----+-------+
随着时间的推移,喜欢的数量看起来像 f(x) = sqrt(x)
我的方法是为每个帖子创建一个多元多项式回归,并以某种方式对它们进行集成/平均。
这是一个好方法吗?哪种合奏技术合适?