在第 1.83 段的“广义线性模型从业者指南”中指出:
“在泊松乘法 GLM 的特定情况下,可以表明,使用等于暴露对数的偏移项对索赔计数进行建模产生的结果与对先前权重设置为等于每个观察的暴露的索赔频率建模产生相同的结果。 "
我无法找到该结果的任何进一步参考,因此我进行了一些经验测试,在这些测试中我无法找到该陈述正确的证据。任何人都可以提供一些关于为什么这个结果可能是正确/错误的见解。
仅供参考,我使用以下 R 代码来测试假设,在其中我无法为提到的两个案例获得类似的结果:
n=1000
m=10
# Generate random data
X = matrix(data = rnorm(n*m)+1, ncol = m, nrow = n)
intercept = 2
coefs = runif(m)
offset = runif(n)
## DGP: exp of Intercept + linear combination X variables + log(offset)
mu = exp(intercept + X%*%coefs + log(offset))
y = rpois(n=n, lambda=mu)
df = data.frame('y'=y, 'X'=X, 'offset' = offset)
formula = paste("y ~",paste(colnames(df)[grepl("X", colnames(df))], collapse = "+"))
#First model using log(offset) as offset
fit1 = glm(formula, family = "poisson", df, offset = log(offset))
#Second model using offset as weights for individual observations
fit2 = glm(formula, family = "poisson", df, weights = offset)
#Third model using poisson model on y/offset as reference
dfNew = df
dfNew$y = dfNew$y/offset
fit3 = glm(formula, family = "poisson", dfNew)
#Combine coefficients with the true coefficients
rbind(fit1$coefficients, fit2$coefficients, fit3$coefficients, c(intercept,coefs))
运行此代码产生的系数估计值如下:
>
(Intercept) X.1 X.2 X.3 X.4 X.5 X.6
[1,] 1.998277 0.2923091 0.4586666 0.1802960 0.11688860 0.7997154 0.4786655
[2,] 1.588620 0.2708272 0.4540180 0.1901753 0.07284985 0.7928951 0.5100480
[3,] 1.983903 0.2942196 0.4593369 0.1782187 0.11846876 0.8018315 0.4807802
[4,] 2.000000 0.2909240 0.4576965 0.1807591 0.11658183 0.8005451 0.4780123
X.7 X.8 X.9 X.10
[1,] 0.005772078 0.9154808 0.9078758 0.3512824
[2,] -0.003705015 0.9117014 0.9063845 0.4155601
[3,] 0.007595660 0.9181014 0.9076908 0.3505173
[4,] 0.005881960 0.9150350 0.9084375 0.3511749
>
我们可以观察到系数不相同。