我正在尝试查看 2 个变量(一个二分分类变量和一个连续变量)是否预测二分分类因变量的出现。
dependent variable is LENIpos - 0 = no event, 1 = event
predictor variables are Hip.Prox.Femur - 0 = no hip fracture, 1 = hip fracture
and age (continuous)
两个预测变量分别在单独的卡方检验和 Mann Whitney U 检验中具有显着的 p 值。
当我运行逻辑回归glm(LENIpos ~ age + Hip.Prox.Femur, family = "binomial)
时,变量不显着。(1)
但是,当我使用交互glm(LENIpos ~ age * Hip.Prox.Femur...)
(2) 运行逻辑回归时,它们都不显着。这该如何解释?
示例 R 输出:
(1)
Call: glm(formula = LENIpos ~ age + Hip.Prox.Fem, family = "binomial",
data = dvt)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.9346 -0.7826 -0.4952 -0.3374 2.1897
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.46888 1.00693 -3.445 0.000571 ***
age 0.02122 0.01519 1.397 0.162535
Hip.Prox.Femhip fracture 0.72410 0.57790 1.253 0.210212
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 145.23 on 151 degrees of freedom
Residual deviance: 135.48 on 149 degrees of freedom
AIC: 141.48
Number of Fisher Scoring iterations: 5
(2)
glm(formula = LENIpos ~ age * Hip.Prox.Fem, family = "binomial",
data = dvt)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0364 -0.7815 -0.5373 -0.1761 2.3443
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.89984 1.98289 -2.975 0.00293 **
age 0.05851 0.02818 2.076 0.03788 *
Hip.Prox.Femhip fracture 5.04990 2.46269 2.051 0.04031 *
age:Hip.Prox.Femhip fracture -0.06058 0.03339 -1.814 0.06965 .
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 145.23 on 151 degrees of freedom
Residual deviance: 131.82 on 148 degrees of freedom
AIC: 139.82
Number of Fisher Scoring iterations: 6