我正在研究一个包含 5 个因子(4 个数字和一个标称)的实验,每个数字有 3 个水平,标称有 2 个水平。而不是 162 次运行,我对使用响应曲面的特定假设模型的小型设计(30 次运行)感兴趣。使用AlgDesign
RI 中的库能够生成这 30 个设计点:
library(AlgDesign)
candidates <- gen.factorial(levels = c(3,3,3,3,2),
#code all as numeric, even factors so can do interactions
factors = NULL,
varNames = c("intro","duration","goto","fee","color")
)
candidates
desD <- optFederov(frml = ~intro+goto+duration+fee+color
+ I(intro*intro)
+I(goto*goto)
+I(duration*duration)
+I(fee*fee)
+ I(intro*goto)
+ I(intro*duration)
+ I(intro*fee)
+ I(intro*color)
+ I(goto*duration)
+ I(goto*fee)
+ I(goto*color)
+ I(duration*fee)
+ I(duration*color)
+ I(fee*color),
data = candidates,
nTrials=30,
criterion = "D",
maxIteration = 1000,
eval=TRUE,
nRepeats = 10)
太好了,那么现在这有多好?D 标准是
> desD$D
[1] 0.5422988
问题 #1:如果这是“可接受的”,是否有经验法则?
该库允许人们通过评估运行设计。
eval.design(frml = ~intro+goto+duration+fee+color
+ I(intro*intro)
+I(goto*goto)
+I(duration*duration)
+I(fee*fee)
+ I(intro*goto)
+ I(intro*duration)
+ I(intro*fee)
+ I(intro*color)
+ I(goto*duration)
+ I(goto*fee)
+ I(goto*color)
+ I(duration*fee)
+ I(duration*color)
+ I(fee*color),design = desD$design,confounding = TRUE,X = candidates)
哪个生产
$confounding
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
(Intercept) -1.0000 -0.0898 0.0726 -0.4094 0.0383 -0.3290 0.7405 0.7806 0.7324 0.7541 0.2098
intro -0.0062 -1.0000 0.0842 0.0805 -0.0332 0.0354 -0.0087 -0.0645 0.0805 -0.0050 0.0038
goto 0.0049 0.0810 -1.0000 0.0060 0.0130 -0.0041 -0.0118 0.0066 -0.0063 0.0001 -0.0849
duration -0.0278 0.0787 0.0061 -1.0000 -0.0250 0.0203 0.0770 0.0297 -0.0185 -0.0076 0.0246
fee 0.0025 -0.0311 0.0126 -0.0239 -1.0000 -0.0125 0.0084 -0.0262 0.0077 0.0004 0.0568
color -0.0177 0.0273 -0.0033 0.0161 -0.0103 -1.0000 -0.0020 0.0258 -0.0001 0.0031 0.0097
I(intro * intro) 0.3066 -0.0517 -0.0728 0.4690 0.0536 -0.0151 -1.0000 -0.0058 0.0647 0.0602 0.0813
I(goto * goto) 0.2605 -0.3092 0.0330 0.1456 -0.1339 0.1602 -0.0047 -1.0000 0.0265 0.0040 0.0549
I(duration * duration) 0.2905 0.4590 -0.0373 -0.1078 0.0471 -0.0007 0.0620 0.0315 -1.0000 0.0339 -0.1652
I(fee * fee) 0.2847 -0.0271 0.0005 -0.0423 0.0026 0.0217 0.0549 0.0045 0.0323 -1.0000 -0.1389
I(intro * goto) 0.0169 0.0044 -0.1024 0.0292 0.0703 0.0145 0.0159 0.0133 -0.0336 -0.0297 -1.0000
I(intro * duration) 0.0091 0.0349 0.0368 0.0470 -0.1013 0.0590 0.0002 0.0080 0.0105 -0.0379 0.0443
I(intro * fee) 0.0189 0.0570 0.0485 -0.1040 -0.0341 0.0382 0.0154 -0.0077 -0.0630 -0.0096 -0.0486
I(intro * color) 0.0034 -0.2138 0.0249 0.0622 0.0264 -0.0187 0.0119 -0.0429 0.0152 0.0019 -0.0801
I(goto * duration) -0.0004 0.0445 0.0078 -0.0399 -0.0384 -0.0062 0.0505 -0.0012 -0.0039 -0.0493 0.0320
I(goto * fee) -0.0003 0.0332 -0.0133 -0.0099 -0.0060 0.0044 -0.0462 0.0064 0.0496 -0.0052 -0.0274
I(goto * color) 0.0259 0.0300 -0.1740 0.0400 0.0035 -0.0015 -0.0885 0.0056 0.0061 0.0042 0.0055
I(duration * fee) -0.0054 -0.0940 -0.0304 0.0287 -0.0454 0.0472 0.0381 -0.0191 0.0003 -0.0130 -0.0549
I(duration * color) -0.0016 0.0501 -0.0085 -0.1986 0.0270 -0.0226 0.0242 -0.0199 -0.0049 0.0047 -0.0344
I(fee * color) -0.0033 0.0341 0.0013 0.0257 -0.1876 0.0169 -0.0100 0.0256 -0.0033 -0.0013 0.0476
[,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
(Intercept) 0.1190 0.2467 0.0508 -0.0053 -0.0038 0.3719 -0.0706 -0.0239 -0.0508
intro 0.0318 0.0518 -0.2232 0.0389 0.0290 0.0300 -0.0859 0.0536 0.0367
goto 0.0322 0.0425 0.0250 0.0066 -0.0112 -0.1672 -0.0267 -0.0088 0.0013
duration 0.0418 -0.0925 0.0635 -0.0341 -0.0085 0.0391 0.0256 -0.2079 0.0271
fee -0.0865 -0.0291 0.0259 -0.0314 -0.0049 0.0033 -0.0389 0.0271 -0.1893
color 0.0415 0.0269 -0.0151 -0.0042 0.0030 -0.0011 0.0333 -0.0187 0.0141
I(intro * intro) 0.0009 0.0831 0.0741 0.2624 -0.2401 -0.5263 0.2069 0.1540 -0.0642
I(goto * goto) 0.0350 -0.0334 -0.2150 -0.0049 0.0269 0.0270 -0.0838 -0.1023 0.1324
I(duration * duration) 0.0543 -0.3265 0.0902 -0.0192 0.2471 0.0349 0.0013 -0.0298 -0.0205
I(fee * fee) -0.1875 -0.0474 0.0107 -0.2338 -0.0245 0.0230 -0.0643 0.0276 -0.0074
I(intro * goto) 0.0468 -0.0512 -0.0970 0.0324 -0.0278 0.0063 -0.0582 -0.0427 0.0595
I(intro * duration) -1.0000 0.0108 0.0672 0.0370 -0.0563 -0.0412 -0.0954 0.0589 -0.0214
I(intro * fee) 0.0108 -1.0000 -0.0388 -0.0566 0.0585 0.0647 0.0000 -0.0220 0.0418
I(intro * color) 0.0587 -0.0338 -1.0000 -0.0307 0.0495 0.0947 -0.0176 0.0419 -0.0098
I(goto * duration) 0.0385 -0.0590 -0.0367 -1.0000 -0.0296 0.0317 0.0420 -0.0029 0.0393
I(goto * fee) -0.0586 0.0609 0.0591 -0.0296 -1.0000 -0.0335 -0.0375 0.0442 0.0025
I(goto * color) -0.0376 0.0589 0.0989 0.0278 -0.0293 -1.0000 0.0519 0.0125 -0.0087
I(duration * fee) -0.0951 0.0000 -0.0201 0.0401 -0.0359 0.0568 -1.0000 -0.0309 0.0414
I(duration * color) 0.0501 -0.0187 0.0408 -0.0023 0.0361 0.0117 -0.0264 -1.0000 -0.0170
I(fee * color) -0.0181 0.0353 -0.0095 0.0319 0.0020 -0.0080 0.0351 -0.0169 -1.0000
$determinant
[1] 0.5422988
$A
[1] 3.51777
$I
[1] 20.58251
$Geff
[1] 0.696
$Deffbound
[1] 0.646
$diagonality
[1] 0.782
$gmean.variances
[1] 1.966862
问题 #2:从其中一个包 vignettes 中,这是关于他们正在观察的设计和 eval 函数的声明。那么人们是否只从相对的角度看待这些事情(与分数阶乘不同,其中的影响要么是清晰的要么是混杂的),其中 0.78 的对角性非常好(因为 1 是完美的)并且混杂矩阵中是否存在“大“那么我们认为这些影响是有问题的,无法清楚地估计它们?
编辑:1
这是我的一个想法——如果这种方法是有效的,也许有人可以给出他们的想法,以确保效果有点不混淆。
创建虚拟响应数据,拟合感兴趣的模型,然后检查 VIF。在这里,没有一个高于 2,所以我们很高兴能够对效果进行清晰的估计。
#dummy response
y <- rbinom(nrow(desD$design),size = 12000,prob = 0.009)
non_response<-12000-y
mod <- glm(cbind(y,non_response)~intro+goto+duration+fee+color
+ I(intro*intro)
+I(goto*goto)
+I(duration*duration)
+I(fee*fee)
+ I(intro*goto)
+ I(intro*duration)
+ I(intro*fee)
+ I(intro*color)
+ I(goto*duration)
+ I(goto*fee)
+ I(goto*color)
+ I(duration*fee)
+ I(duration*color)
+ I(fee*color), data=desD$design, family = "binomial")
library(car)
car::vif(mod)
intro goto duration fee color
1.045220 1.066770 1.095618 1.159182 1.083592
I(intro * intro) I(goto * goto) I(duration * duration) I(fee * fee) I(intro * goto)
1.136307 1.225223 1.238652 1.104796 1.053494
I(intro * duration) I(intro * fee) I(intro * color) I(goto * duration) I(goto * fee)
1.061060 1.038913 1.144018 1.058265 1.044455
I(goto * color) I(duration * fee) I(duration * color) I(fee * color)
1.050094 1.063997 1.066333 1.100737