个点的小数据集,每个点有四个特征。我计划拟合 SVM 回归,因为值给了我定义容差值的可能性,这在其他回归技术中是不可能的。
的不同值和值运行了交叉验证的网格搜索。对于、和的不同组合,我收到相似的分数(如网格和结果中所示)。
问题:如何定义改进超参数选择和为我的数据集建立合理模型的标准?
结果:
**Epsilon = 0.06**
The best parameters are {'C': 48.939009184774889, 'gamma': 0.03562247890262444} with a score of 0.64
**Epsilon = 0.09**
The best parameters are {'C': 48.939009184774889, 'gamma': 0.03562247890262444} with a score of 0.64
**Epsilon = 0.11**
The best parameters are {'C': 48.939009184774889, 'gamma': 0.03562247890262444} with a score of 0.66
**Epsilon = 0.14**
The best parameters are {'C': 48.939009184774889, 'gamma': 0.03562247890262444} with a score of 0.67
**Epsilon = 0.17**
The best parameters are {'C': 48.939009184774889, 'gamma': 0.03562247890262444} with a score of 0.66
**Epsilon = 0.19**
The best parameters are {'C': 48.939009184774889, 'gamma': 0.03562247890262444} with a score of 0.65
**Epsilon = 0.22**
The best parameters are {'C': 48.939009184774889, 'gamma': 0.03562247890262444} with a score of 0.64
**Epsilon = 0.25**
The best parameters are {'C': 14873.521072935118, 'gamma': 0.00072789538439831537} with a score of 0.65
**Epsilon = 0.27**
The best parameters are {'C': 621.0169418915616, 'gamma': 0.0038566204211634724} with a score of 0.65
**Epsilon = 0.30**
The best parameters are {'C': 4175.3189365604003, 'gamma': 0.0012689610031679235} with a score of 0.66

