我正在使用 Lasso 正则化来避免两个特征(X1 和 X2)之间的过度拟合和多重共线性,因为我有 14 个独立的特征。我在某些特征上得到了一些不错的结果,Lasso 能够将系数降低到 0,但对于其他特征,线性回归系数小于 Lasso(Ridge 也是如此)。
lr = LinearRegression()
lr.fit(X, Y)
lr_coeff = lr.coef_
lr_intercept = lr.intercept_
lasso = Lasso(alpha=10)
lasso.fit(X, Y)
lasso_coeff = lasso.coef_
lasso_intercept = lasso.intercept_
结果:
lr_coeff lr_intercept lasso_coeff lasso_intercept
0 0.968567 16.01858 0.000000 103.471224
1 1.743420 16.01858 1.730920 103.471224
2 5.221518 16.01858 3.931450 103.471224
3 4.769328 16.01858 3.186003 103.471224
4 6.341612 16.01858 4.265931 103.471224
5 2.272504 16.01858 1.277541 103.471224
6 3.104016 16.01858 1.648253 103.471224
7 1.418943 16.01858 0.667189 103.471224
8 1.144834 16.01858 0.000000 103.471224
9 0.138457 16.01858 0.000000 103.471224
10 1.272995 16.01858 0.693323 103.471224
11 0.188450 16.01858 0.503958 103.471224
12 -2.334245 16.01858 -0.167953 103.471224
13 -0.475823 16.01858 0.124608 103.471224
14 0.489548 16.01858 0.512034 103.471224
真挚地,