weka.classifiers.functions.Logistic请帮助解释WEKA 库产生的逻辑回归结果。
我使用来自 WEKA 示例的数字数据:
@relation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature real
@attribute humidity real
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}
@data
sunny,85,85,FALSE,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,96,FALSE,yes
rainy,68,80,FALSE,yes
rainy,65,70,TRUE,no
overcast,64,65,TRUE,yes
sunny,72,95,FALSE,no
sunny,69,70,FALSE,yes
rainy,75,80,FALSE,yes
sunny,75,70,TRUE,yes
overcast,72,90,TRUE,yes
overcast,81,75,FALSE,yes
rainy,71,91,TRUE,no
要创建逻辑回归模型,我使用以下命令:
java -cp WEKA_INS/weka.jar weka.classifiers.functions.Logistic -t WEKA_INS/data/weather.numeric.arff -T WEKA_INS/data/weather.numeric.arff -d ./weather.numeric.model.arff
以下是这三个论点的含义:
-t <name of training file> : Sets training file.
-T <name of test file> : Sets test file.
-d <name of output file> : Sets model output file.
运行上述命令会产生以下输出:
Logistic Regression with ridge parameter of 1.0E-8
Coefficients...
Class
Variable yes
===============================
outlook=sunny -6.4257
outlook=overcast 13.5922
outlook=rainy -5.6562
temperature -0.0776
humidity -0.1556
windy 3.7317
Intercept 22.234
Odds Ratios...
Class
Variable yes
===============================
outlook=sunny 0.0016
outlook=overcast 799848.4264
outlook=rainy 0.0035
temperature 0.9254
humidity 0.8559
windy 41.7508
Time taken to build model: 0.05 seconds
Time taken to test model on training data: 0 seconds
=== Error on training data ===
Correctly Classified Instances 11 78.5714 %
Incorrectly Classified Instances 3 21.4286 %
Kappa statistic 0.5532
Mean absolute error 0.2066
Root mean squared error 0.3273
Relative absolute error 44.4963 %
Root relative squared error 68.2597 %
Total Number of Instances 14
=== Confusion Matrix ===
a b <-- classified as
7 2 | a = yes
1 4 | b = no
问题:
报告第一部分:
// Coefficients... Class Variable yes =============================== outlook=sunny -6.4257 outlook=overcast 13.5922 outlook=rainy -5.6562 temperature -0.0776 humidity -0.1556 windy 3.7317 Intercept 22.234- 我是否理解正确,实际上是在将它们加在一起以产生等于
Coefficients的类属性值之前应用于每个属性的权重?playyes
- 我是否理解正确,实际上是在将它们加在一起以产生等于
报告第二部分:
// Odds Ratios... Class Variable yes =============================== outlook=sunny 0.0016 outlook=overcast 799848.4264 outlook=rainy 0.0035 temperature 0.9254 humidity 0.8559 windy 41.7508“赔率比”是什么意思?
play它们是否也都与等于的类属性有关yes?为什么价值
outlook=overcast比价值大那么多outlook=sunny?
混淆矩阵
=== Confusion Matrix === a b <-- classified as 7 2 | a = yes 1 4 | b = no- “混淆矩阵”是什么意思?
非常感谢你的帮助!