我不明白如何定义多项回归的先验分布。
- 鉴于响应实际上没有单位(而只是类别),应该以什么单位设置先验概率?它应该是一个概率,还是一个赔率的对数?
- 先验的维度是否取决于分类响应变量中的水平数?
- 分类响应变量的方差 - 协方差矩阵的含义是什么?
这是我的数据的一个子集(变量名称和结果已被重命名)。处理这些数据的一个例子MCMCglmm会很棒!
df=read.table(text="y x1 x2
1 yellow 106.00 6.190476
2 yellow 120.00 5.254762
3 yellow 57.00 6.202381
4 yellow 115.33 5.652381
5 yellow 175.00 6.154762
6 yellow 74.00 8.285714
7 yellow 104.67 3.766667
8 yellow 95.50 7.976190
9 yellow 108.00 8.792857
10 yellow 121.33 7.935714
11 yellow 66.67 6.969048
12 yellow 30.00 7.333333
13 yellow 45.00 6.811905
14 yellow 70.00 7.550000
15 yellow 48.00 7.316667
16 yellow 211.00 4.650000
17 yellow 69.00 8.369048
18 yellow 110.50 6.621429
19 yellow 203.00 6.095238
20 yellow 75.33 8.211905
21 yellow 207.33 6.211905
22 yellow 54.00 7.961905
23 yellow 74.00 7.019048
24 yellow 113.00 4.221429
25 yellow 23.00 7.942857
26 yellow 80.00 7.511905
27 yellow 257.00 7.878571
28 yellow 211.00 7.754762
29 yellow 99.00 8.016667
30 yellow 120.00 7.728571
31 yellow 222.50 5.840476
32 yellow 44.00 4.209524
33 yellow 63.00 6.614286
34 yellow 57.00 8.669048
35 yellow 223.33 7.033333
36 yellow 128.00 6.754762
37 yellow 128.00 5.561905
38 yellow 121.00 7.471429
39 yellow 70.00 7.445238
40 yellow 85.67 5.261905
41 yellow 113.33 8.509524
42 yellow 82.00 6.697619
43 red 207.33 4.180952
44 red 167.67 5.302381
45 red 366.50 7.102381
46 red 230.00 4.942857
47 red 201.00 5.754762
48 red 226.00 9.076190
49 red 193.33 7.066667
50 red 170.00 7.314286
51 red 361.33 7.502381
52 blue 154.00 4.342857
53 red 199.33 6.361905
54 blue 97.00 7.750000
55 blue 82.33 6.209524
56 blue 55.67 5.321429
57 blue 47.50 5.911905
58 blue 15.67 7.185714
59 blue 96.50 6.452381
60 blue 202.33 8.576190
61 blue 157.00 6.669048
62 blue 117.33 5.828571
63 blue 105.67 8.485714
64 blue 108.67 5.714286
65 blue 296.67 5.852381
66 blue 206.50 6.826190
67 blue 88.50 6.178571
68 blue 163.00 7.833333
69 blue 151.50 8.983333")
这是一个MCMCglmm默认先验导致错误消息的调用
set.seed(12)
m = MCMCglmm(y ~ -1 + trait:(x1) + trait:(x2) , rcov = ~ us(trait):units,
data = df, family = "categorical", verbose = TRUE, burnin = 8000,
nitt = 40000, thin = 50)
ill-conditioned G/R structure (CN = 24007848728601288.000000):
use proper priors if you haven't or rescale data if you have