如何判断混合模型中的随机效应将估计多少个参数?这是 nlme 中 lme 函数的示例:
library(nlme)
fm1 <- lme(fixed = distance ~ age, random = ~ 1 | Subject, data = Orthodont, method = "ML", control=lmeControl(opt = "optim"))
fm2 <- lme(fixed = distance ~ age + Sex, random = ~ 1 | Subject, data = Orthodont, method = "ML", control=lmeControl(opt = "optim"))
fm3 <- lme(fixed = distance ~ age, random = ~ age | Subject, data = Orthodont, method = "ML", control=lmeControl(opt = "optim"))
fm4 <- lme(fixed = distance ~ age + Sex, random = ~ age | Subject, data = Orthodont, method = "ML", control=lmeControl(opt = "optim"))
fm5 <- lme(fixed = distance ~ age + Sex, random = ~ age + Sex | Subject, data = Orthodont, method = "ML", control=lmeControl(opt = "optim"))
library(AICcmodavg)
aictab(list(fm1,fm2,fm3,fm4,fm5), c("fm1","fm2","fm3","fm4","fm5"))
有人可以帮我理解为什么 K 是 fm1-fm5 的意思吗?
K AICc Delta_AICc AICcWt Cum.Wt LL
fm2 5 445.44 0.00 0.72 0.72 -217.43
fm4 7 447.96 2.51 0.21 0.93 -216.42
fm1 4 451.78 6.33 0.03 0.96 -221.69
fm3 6 452.04 6.60 0.03 0.99 -219.61
fm5 10 453.44 7.99 0.01 1.00 -215.58
特别是为什么fm5比fm4多了3个参数?