考虑密度函数
f(x|α,β,γ)∝xα−1e−βx−γ/x.f(x|α,β,γ)∝xα−1e−βx−γ/x.
为了α>0α>0和γ=0γ=0,这显然简化为 Gamma 分布。为了α<0α<0和β=0β=0,这减少到逆伽玛分布。
什么时候α>0α>0,β>0β>0和γ>0γ>0
经过相当多的搜索 - 这是广义逆高斯随机变量的密度。有许多算法可以从这个分布中采样。
R 包包括GIGrvg、ghyp和Runuran。更多细节可以在以下论文中找到。
沃尔夫冈·霍曼和约瑟夫·莱多德 (2013)。生成广义逆高斯随机变量,统计与计算,DOI:10.1007/s11222-013-9387-3
JS 达格普纳尔 (1989)。一个易于实现的广义逆高斯生成器,Comm。统计学家。B – 模拟计算机。18, 703–710。
Devroye,卢克。“广义逆高斯分布的随机变量生成。” 统计与计算 24.2(2014 年):239-246。