我有一些使用机器学习算法(基本的随机森林和线性回归类型的东西)的自学知识。我决定扩展并开始使用 Keras 学习 RNN。在查看通常涉及股票预测的大多数示例时,除了 1 列是功能日期而另一列是输出之外,我找不到任何正在实现的多个功能的基本示例。我是否缺少关键的基本知识或其他东西?
如果有人有一个例子,我将不胜感激。
谢谢!
我有一些使用机器学习算法(基本的随机森林和线性回归类型的东西)的自学知识。我决定扩展并开始使用 Keras 学习 RNN。在查看通常涉及股票预测的大多数示例时,除了 1 列是功能日期而另一列是输出之外,我找不到任何正在实现的多个功能的基本示例。我是否缺少关键的基本知识或其他东西?
如果有人有一个例子,我将不胜感激。
谢谢!
循环神经网络 (RNN) 旨在学习序列数据。正如您所猜测的,它们绝对可以将多个特征作为输入!Keras 的 RNN 采用时间步T和特征F的 2D 输入( T,F ) (我在这里忽略了批量维度)。
但是,您并不总是需要或想要中间时间步长t = 1, 2 ... ( T - 1)。因此,Keras 灵活地支持这两种模式。要让它输出所有T个时间步,请在构建时传递return_sequences=True
给您的 RNN(例如,LSTM
或GRU
)。如果您只想要最后一个时间步t = T,则使用return_sequences=False
(如果您不传递return_sequences
给构造函数,这是默认设置)。
以下是这两种模式的示例。
这是一个训练 LSTM(RNN 类型)的快速示例,它可以保持整个序列。在这个例子中,每个输入数据点有 2 个时间步长,每个时间步长有 3 个特征;输出数据有 2 个时间步长(因为return_sequences=True
),每个时间步长有 4 个数据点(因为这是我传递给的大小LSTM
)。
import keras.layers as L
import keras.models as M
import numpy
# The inputs to the model.
# We will create two data points, just for the example.
data_x = numpy.array([
# Datapoint 1
[
# Input features at timestep 1
[1, 2, 3],
# Input features at timestep 2
[4, 5, 6]
],
# Datapoint 2
[
# Features at timestep 1
[7, 8, 9],
# Features at timestep 2
[10, 11, 12]
]
])
# The desired model outputs.
# We will create two data points, just for the example.
data_y = numpy.array([
# Datapoint 1
[
# Target features at timestep 1
[101, 102, 103, 104],
# Target features at timestep 2
[105, 106, 107, 108]
],
# Datapoint 2
[
# Target features at timestep 1
[201, 202, 203, 204],
# Target features at timestep 2
[205, 206, 207, 208]
]
])
# Each input data point has 2 timesteps, each with 3 features.
# So the input shape (excluding batch_size) is (2, 3), which
# matches the shape of each data point in data_x above.
model_input = L.Input(shape=(2, 3))
# This RNN will return timesteps with 4 features each.
# Because return_sequences=True, it will output 2 timesteps, each
# with 4 features. So the output shape (excluding batch size) is
# (2, 4), which matches the shape of each data point in data_y above.
model_output = L.LSTM(4, return_sequences=True)(model_input)
# Create the model.
model = M.Model(input=model_input, output=model_output)
# You need to pick appropriate loss/optimizers for your problem.
# I'm just using these to make the example compile.
model.compile('sgd', 'mean_squared_error')
# Train
model.fit(data_x, data_y)
另一方面,如果你想训练一个只输出序列中最后一个时间步长的 LSTM,那么你需要设置return_sequences=False
(或者只是将它从构造函数中完全删除,因为False
这是默认设置)。然后您的输出数据(data_y
在上面的示例中)需要重新排列,因为您只需要提供最后一个时间步。所以在第二个例子中,每个输入数据点仍然有 2 个时间步长,每个时间步长有 3 个特征。然而,输出数据只是每个数据点的单个向量,因为我们已将所有内容扁平化为单个时间步长。但是,这些输出向量中的每一个仍然具有 4 个特征(因为这是我传递给的大小LSTM
)。
import keras.layers as L
import keras.models as M
import numpy
# The inputs to the model.
# We will create two data points, just for the example.
data_x = numpy.array([
# Datapoint 1
[
# Input features at timestep 1
[1, 2, 3],
# Input features at timestep 2
[4, 5, 6]
],
# Datapoint 2
[
# Features at timestep 1
[7, 8, 9],
# Features at timestep 2
[10, 11, 12]
]
])
# The desired model outputs.
# We will create two data points, just for the example.
data_y = numpy.array([
# Datapoint 1
# Target features at timestep 2
[105, 106, 107, 108],
# Datapoint 2
# Target features at timestep 2
[205, 206, 207, 208]
])
# Each input data point has 2 timesteps, each with 3 features.
# So the input shape (excluding batch_size) is (2, 3), which
# matches the shape of each data point in data_x above.
model_input = L.Input(shape=(2, 3))
# This RNN will return timesteps with 4 features each.
# Because return_sequences=False, it will output 2 timesteps, each
# with 4 features. So the output shape (excluding batch size) is
# (2, 4), which matches the shape of each data point in data_y above.
model_output = L.LSTM(4, return_sequences=False)(model_input)
# Create the model.
model = M.Model(input=model_input, output=model_output)
# You need to pick appropriate loss/optimizers for your problem.
# I'm just using these to make the example compile.
model.compile('sgd', 'mean_squared_error')
# Train
model.fit(data_x, data_y)