为什么 Spark 和 R 中的逻辑回归会为相同的数据返回不同的模型?

数据挖掘 机器学习 r 逻辑回归 阿帕奇火花
2021-10-09 15:05:16

我在390 obs 的数据集上比较了 R ( glm) 和 Spark ( ) 上的逻辑回归模型。LogisticRegressionWithLBFGS14 个变量。

结果在截距和权重上完全不同。这要怎么解释?

这是 Spark (LogisticRegressionWithLBFGS) 的结果:

model.intercept  : 
 1.119830027739959
model.weights :
 GEST    0.30798496002530473
 DILATE  0.28121771009716895
 EFFACE  0.01780105068588628
 CONSIS -0.22782058111362183
 CONTR  -0.8094592237248102
 MEMBRAN-1.788173534959893
 AGE    -0.05285751197750732
 STRAT  -1.6650305527536942
 GRAVID  0.38324952943210994
 PARIT  -0.9463956993328745
 DIAB   0.18151162744507293
 TRANSF -0.7413500749909346
 GEMEL  1.5953124037323745

这是 R 的结果:

             Estimate Std. Error z value Pr(>|z|)   
(Intercept)  3.0682091  3.3944407   0.904 0.366052    
GEST         0.0086545  0.1494487   0.058 0.953821    
DILATE       0.4898586  0.2049361   2.390 0.016835 *  
EFFACE       0.0131834  0.0059331   2.222 0.026283 *  
CONSIS       0.1598426  0.2332670   0.685 0.493196    
CONTR        0.0008504  0.5788959   0.001 0.998828    
MEMBRAN     -1.5497870  0.4215416  -3.676 0.000236 ***   
AGE         -0.0420145  0.0326184  -1.288 0.197725    
STRAT       -0.3781365  0.5860476  -0.645 0.518777    
GRAVID       0.1866430  0.1522925   1.226 0.220366    
PARIT       -0.6493312  0.2357530  -2.754 0.005882 **  
DIAB         0.0335458  0.2163165   0.155 0.876760    
TRANSF      -0.6239330  0.3396592  -1.837 0.066219 .  
GEMEL        2.2767331  1.0995245   2.071 0.038391 *  
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1个回答

快速浏览LogisticRegressionWithLBFGS 的文档表明它默认使用特征缩放和 L2-Regularization。我怀疑 Rglm正在返回模型的最大似然估计,而 SparkLogisticRegressionWithLBFGS正在返回正则化模型估计。请注意,Spark 模型的估计模型权重在数量级上都小于 R 模型中的权重。

我不确定glmR 中是否正在实现特征缩放,但这也会导致不同的模型值。