keras 模型仅预测所有测试图像的一类

数据挖掘 Python 喀拉斯 美国有线电视新闻网 图像分类
2021-09-29 19:51:50

我正在尝试建立一个图像分类模型,它有 2 个有(1)或没有(0)的类。我可以构建模型并获得 1 的准确度。这太好了,令人难以置信(这是一个问题),但是当我使用 predict_generator 因为我在文件夹中有图像时,它只返回 1 类 0(没有类)。似乎有问题,但我无法解决,我查看了很多文章,但仍然无法解决问题。

image_shape = (220, 525, 3) #height, width, channels
img_width = 96
img_height = 96
channels = 3

epochs = 10

no_train_images = 11957              #!ls ../data/train/* | wc -l
no_test_images = 652                 #!ls ../data/test/* | wc -l
no_valid_images = 6156               #!ls ../data/test/* | wc -l

train_dir = '../data/train/'
test_dir = '../data/test/'
valid_dir = '../data/valid/'

classification_model = Sequential()

# First layer with 2D convolution (32 filters, (3, 3) kernel size 3x3, input_shape=(img_width, img_height, channels))
classification_model.add(Conv2D(32, (3, 3), input_shape=input_shape))
# Activation Function = ReLu increases the non-linearity
classification_model.add(Activation('relu'))
# Max-Pooling layer with the size of the grid 2x2
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
# Randomly disconnets some nodes between this layer and the next 
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(32, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.25))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.3))

classification_model.add(Flatten())
classification_model.add(Dense(64))
classification_model.add(Activation('relu'))
classification_model.add(Dropout(0.5))
classification_model.add(Dense(1))
classification_model.add(Activation('sigmoid'))

# Using binary_crossentropy as we only have 2 classes
classification_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])



batch_size = 32

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    zoom_range=0.2)

# this is the augmentation configuration we will use for testing:
# only rescaling
valid_datagen = ImageDataGenerator(rescale=1. / 255)
test_datagen = ImageDataGenerator()

train_generator = train_datagen.flow_from_directory(
    train_dir,
    target_size = (img_width, img_height),
    batch_size = batch_size,
    class_mode = 'binary',
    shuffle = True)

valid_generator = valid_datagen.flow_from_directory(
    valid_dir,
    target_size = (img_width, img_height),
    batch_size = batch_size,
    class_mode = 'binary',
    shuffle = False)

test_generator = test_datagen.flow_from_directory(
    test_dir,
    target_size = (img_width, img_height),
    batch_size = 1,
    class_mode = None,
    shuffle = False)

mpd = classification_model.fit_generator(
    train_generator,
    steps_per_epoch = no_train_images // batch_size,         # number of images per epoch
    epochs = epochs,                                         # number of iterations over the entire data
    validation_data = valid_generator,
    validation_steps = no_valid_images // batch_size)  

纪元 1/10 373/373 [===============================] - 119s 320ms/步 - 损失:0.5214 - acc :0.7357 - val_loss:0.2720 - val_acc:0.8758

纪元 2/10 373/373 [===============================] - 120s 322ms/step - loss: 0.2485 - acc :0.8935 - val_loss:0.0568 - val_acc:0.9829

纪元 3/10 373/373 [===============================] - 130s 350ms/步 - 损失:0.1427 - acc :0.9435 - val_loss:0.0410 - val_acc:0.9796

纪元 4/10 373/373 [===============================] - 127s 341ms/step - loss: 0.1053 - acc :0.9623 - val_loss:0.0197 - val_acc:0.9971

纪元 5/10 373/373 [===============================] - 126s 337ms/step - loss: 0.0817 - acc :0.9682 - val_loss:0.0136 - val_acc:0.9948

纪元 6/10 373/373 [===============================] - 123s 329ms/步 - 损失:0.0665 - acc :0.9754 - val_loss:0.0116 - val_acc:0.9985

纪元 7/10 373/373 [===============================] - 140s 376ms/步 - 损失:0.0518 - acc :0.9817 - val_loss:0.0035 - val_acc:0.9997

纪元 8/10 373/373 [===============================] - 144s 386ms/步 - 损失:0.0539 - acc :0.9832 - val_loss:8.9459e-04 - val_acc:1.0000

纪元 9/10 373/373 [===============================] - 122s 327ms/步 - 损失:0.0434 - acc :0.9850 - val_loss:0.0023 - val_acc:0.9997

纪元 10/10 373/373 [===============================] - 125s 336ms/步 - 损失:0.0513 - acc :0.9844 - val_loss:0.0014 - val_acc:1.0000

valid_generator.batch_size=1
score = classification_model.evaluate_generator(valid_generator, 
                                                no_test_images/batch_size, pickle_safe=False)
test_generator.reset()
scores=classification_model.predict_generator(test_generator, len(test_generator))

print("Loss: ", score[0], "Accuracy: ", score[1])

predicted_class_indices=np.argmax(scores,axis=1)
print(predicted_class_indices)

labels = (train_generator.class_indices)
labelss = dict((v,k) for k,v in labels.items())
predictions = [labelss[k] for k in predicted_class_indices]

filenames=test_generator.filenames
results=pd.DataFrame({"Filename":filenames,
                      "Predictions":predictions})

print(results)

损失:5.404246180551993e-06 精度:1.0

打印(predicted_class_indices) - 全部 0

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

                              Filename Predictions
0      test_folder/video_3_frame10.jpg   without
1    test_folder/video_3_frame1001.jpg   without
2    test_folder/video_3_frame1006.jpg   without
3    test_folder/video_3_frame1008.jpg   without
4    test_folder/video_3_frame1009.jpg   without
5    test_folder/video_3_frame1010.jpg   without
6    test_folder/video_3_frame1013.jpg   without
7    test_folder/video_3_frame1014.jpg   without
8    test_folder/video_3_frame1022.jpg   without
9    test_folder/video_3_frame1023.jpg   without
10    test_folder/video_3_frame103.jpg   without
11   test_folder/video_3_frame1036.jpg   without
12   test_folder/video_3_frame1039.jpg   without
13    test_folder/video_3_frame104.jpg   without
14   test_folder/video_3_frame1042.jpg   without
15   test_folder/video_3_frame1043.jpg   without
16   test_folder/video_3_frame1048.jpg   without
17    test_folder/video_3_frame105.jpg   without
18   test_folder/video_3_frame1051.jpg   without
19   test_folder/video_3_frame1052.jpg   without
20   test_folder/video_3_frame1054.jpg   without
21   test_folder/video_3_frame1055.jpg   without
22   test_folder/video_3_frame1057.jpg   without
23   test_folder/video_3_frame1059.jpg   without
24   test_folder/video_3_frame1060.jpg   without

...只是一些输出,但所有 650+ 都没有类。

这是输出,如您所见,对于无类,所有预测值为 0。

这是我第一次尝试使用 Keras 和 CNN,因此非常感谢任何帮助。

更新

我已经解决了这个问题。我目前正在研究准确性,但现在主要问题已解决。

这是导致问题的线路。

predicted_class_indices=np.argmax(scores,axis=1)

argmax 将返回结果的索引位置,但是当我使用二进制类并且在我的最后一层中,我有 1 个密集的。它只会返回一个值,因此它将始终返回第一个类(0 作为索引位置)。由于网络只设置,返回一个类。

更改以下内容解决了我的问题。

  1. 将训练和测试生成器的 class_mode 更改为“分类”
  2. 将最终的密集层从 1 更改为 2,因此这将返回两个类的分数/概率。所以当你使用 argmax 时,它会返回最高分的索引位置,表明它预测了哪个类。
1个回答

更新

我已经解决了这个问题。我目前正在研究准确性,但现在主要问题已解决。

这是导致问题的线路。

predicted_class_indices=np.argmax(scores,axis=1)

argmax 将返回结果的索引位置,但是当我使用二进制类并且在我的最后一层中,我有 1 个密集的。它只会返回一个值,因此它将始终返回第一个类(0 作为索引位置)。由于网络只设置,返回一个类。

更改以下内容解决了我的问题。

1.将训练和测试生成器的 class_mode 更改为“分类” 2.将最终密集层从 1 更改为 2,因此这将返回两个类的分数/概率。所以当你使用 argmax 时,它会返回最高分的索引位置,表明它预测了哪个类。