我有一个图像数据集 376 个类,每个类有 15 张图片对应一个人。我想得到与每个人对应的特征向量。
我所做的是,在我编译模型之后,我使用这个链接 作为参考来获取最后一个卷积层的权重。但是,当我这样做时,我得到了错误:
InvalidArgumentError: You must feed a value for placeholder tensor 'conv_layer' with dtype float and shape [?,19,19,360]
我该如何解决这个问题?
这是我到目前为止所做的代码:
train_data = np.array(train_data, dtype=np.float32)
test_data = np.array(test_data, dtype=np.float32)
train_data = train_data / 180 # to make the array values between 0-1
test_data = test_data / 180
train_label = keras.utils.to_categorical(train_label, 376)
test_label = keras.utils.to_categorical(test_label, 376)
# CNN MODEL
model = Sequential()
model.add(Conv2D(180, (3, 3), padding='same', input_shape=(180, 180, 3),
activation="relu")) #180 is the number of filters
model.add(Conv2D(180, (3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Dropout(0.25))
model.add(Conv2D(360, (3, 3), padding='same', activation="relu"))
model.add(Conv2D(360, (3, 3), activation="relu"))
conv_layer = model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Dropout(0.25))
flatten_layer = model.add(Flatten())
model.add(Dense(496, activation="relu"))
model.add(Dropout(0.5))
dense_layer = model.add(Dense(376, activation="softmax"))
#compiling the model
model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
model.fit(
train_data,
train_label,
batch_size=32,
epochs=40,
verbose = 2 ,
validation_split=0.1,
shuffle=True)
# getting intermediate layer weights
get_layer_output = K.function([model.layers[0].input],
[model.layers[11].output])
layer_output = get_layer_output([conv_layer])[0]