用于 R 中回归的 XGBoost 自定义目标

数据挖掘 r xgboost 损失函数 公制 目标函数
2021-10-04 07:52:58

xgboost我为回归实现了自定义目标和指标。为了查看我是否正确执行此操作,我从二次损失开始。实施似乎运作良好,但我无法从标准"reg:squarederror"目标重现结果。

问题:

我想知道我目前的方法是否正确(尤其是一阶和二阶梯度的实现)?如果是这样,差异的可能原因是什么?

梯度和 Hessian 定义为:

grad <- 2*(preds-labels) 
hess <- rep(2, length(labels))

最小示例(在 R 中):

library(ISLR)
library(xgboost)
library(tidyverse)
library(Metrics)

# Data
df = ISLR::Hitters %>% select(Salary,AtBat,Hits,HmRun,Runs,RBI,Walks,Years,CAtBat,CHits,CHmRun,CRuns,CRBI,CWalks,PutOuts,Assists,Errors)
df = df[complete.cases(df),]
train = df[1:150,]
test = df[151:nrow(df),]

# XGBoost Matrix
dtrain <- xgb.DMatrix(data=as.matrix(train[,-1]),label=as.matrix(train[,1]))
dtest <- xgb.DMatrix(data=as.matrix(test[,-1]),label=as.matrix(test[,1]))
watchlist <- list(eval = dtest)

# Custom objective function (squared error)
myobjective <- function(preds, dtrain) {
  labels <- getinfo(dtrain, "label")
  grad <- 2*(preds-labels)
  hess <- rep(2, length(labels))
  return(list(grad = grad, hess = hess))
}

# Custom Metric
evalerror <- function(preds, dtrain) {
  labels <- getinfo(dtrain, "label")
  u = (preds-labels)^2
  err <- sqrt((sum(u) / length(u)))
  return(list(metric = "MyError", value = err))
}

# Model Parameter
param1 <- list(booster = 'gbtree'
              , learning_rate = 0.1
              , objective = myobjective 
              , eval_metric = evalerror
              , set.seed = 2020)

# Train Model
xgb1 <- xgb.train(params = param1
                 , data = dtrain
                 , nrounds = 500
                 , watchlist
                 , maximize = FALSE
                 , early_stopping_rounds = 5)

# Predict
pred1 = predict(xgb1, dtest)
mae1 = mae(test$Salary, pred1)


## XGB Model with standard loss/metric
# Model Parameter
param2 <- list(booster = 'gbtree'
              , learning_rate = 0.1
              , objective = "reg:squarederror"
              , set.seed = 2020)

# Train Model
xgb2 <- xgb.train(params = param2
                 , data = dtrain
                 , nrounds = 500
                 , watchlist
                 , maximize = FALSE
                 , early_stopping_rounds = 5)

# Predict
pred2 = predict(xgb2, dtest)
mae2 = mae(test$Salary, pred2)

结果:

  • MAE=199.6与标准目标相比,自定义指标产生的结果稍好MAE=203.3

  • 在提升期间,RMSE 往往会随着自定义目标而降低。

对于自定义目标,RMSE 为:

[1] eval-MyError:599.490030 
[2] eval-MyError:560.677996 
[3] eval-MyError:527.867686
[4] eval-MyError:498.216760 
[5] eval-MyError:472.167415 
...

对于标准目标,RMSE 为:

[1] eval-rmse:598.144775 
[2] eval-rmse:562.479431 
[3] eval-rmse:529.981079 
[4] eval-rmse:501.730103 
[5] eval-rmse:479.081329 
0个回答
没有发现任何回复~