我想对ConvNet从 13 个传感器检索到的一维数据应用 a。所以,我的每个样本都包含 13 个通道(51 个值)
我正在使用“conv1d”在我的数据上应用 ConvNet。该网络运行良好,但我想知道“conv1d”如何确定其过滤器的通道数......据我所知,过滤器应该具有与其输入数据相同数量的通道,这使其成为筛选。我将过滤器的宽度设置为 5,但不需要在任何地方设置通道数。
我的问题是:“conv1”层如何确定它的通道数?
以下是我的部分代码:
# We have 13 1D channels of 51 points each
# Note that we've indicated -1 for batch size, which specifies that this dimension should be dynamically computed
# based on the number of input values in features["x"], holding the size of all other dimensions constant.
input_layer = tf.reshape(features["x"], [-1, 51, 13])
# Convolutional Layer #1
# Shouldn't this filter also need to number of channels?
This should match the input number of channels
conv1 = tf.layers.conv1d(inputs=input_layer, filters=32, kernel_size=5, padding="same", activation=tf.nn.relu)
# Pooling Layer #1
pool1 = tf.layers.max_pooling1d(inputs=conv1, pool_size=2, strides=2)