我创建了一个用于图像分类的 CNN 模型,并且我想使用主成分分析 (PCA),但是当我运行pca.fit()代码时,代码仍会运行数小时并且 RAM 已满。那么,我想知道如何在 CNN 中使用 PCA 来使用 Keras 进行图像识别?
我的代码:
#Data files
train_iris_data = 'Iris_Database_01/Training'
valid_iris_data = 'Iris_Database_01/Validation'
test_iris_data = 'Iris_Database_01/Testing'
#Image data generator
train_iris_datagen = ImageDataGenerator(
rotation_range=10,
shear_range=0.2,
zoom_range=0.1,
width_shift_range=0.1,
height_shift_range=0.1
)
test_iris_datagen = ImageDataGenerator()
#Image batches
image_size = (224, 224)
batch = 32
# Training
train_iris_generator = train_iris_datagen.flow_from_directory(
train_iris_data,
target_size=image_size,
batch_size=batch,
class_mode='categorical')
# Validation
validation_iris_generator = test_iris_datagen.flow_from_directory(
valid_iris_data,
target_size=image_size,
batch_size=batch,
class_mode='categorical',
shuffle = False)
# Testing
test_iris_generator = test_iris_datagen.flow_from_directory(
test_iris_data,
target_size=image_size,
batch_size=1,
class_mode='categorical',
shuffle = False)
pca = PCA(n_components=2)
pca.fit(train_iris_generator)
#pca = PCA(n_components=0.8)
#pca.fit(train_iris_generator)