我正在开发一个使用 keras 进行通用音频标记的系统。
我有以下数据输入:
x_train 每个输入有 10 个不同的数据(数据长度、最大值、最小值等) y_train 表示 41 个可能的标签(吉他、贝司等)
下面是我的代码:
x_train shape = (7104, 10)
y_train shape = (41,)
print(x_train[0])
[ 3.75732000e+05 -2.23437546e-05 -1.17187500e-02 1.30615234e-02
2.65964586e-03 2.65973969e-03 9.80024859e-02 1.13624850e+00
1.00003528e+00 -1.11458333e+00]
print(y_train[0])
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
我的模型是:
from keras.models import Sequential
from keras.optimizers import SGD
from keras.layers import Dense, Dropout, Activation
model = Sequential()
model.add(Dense(units=128, activation='relu', input_dim=10))
model.add(Dropout(0.5))
model.add(Dense(units=64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=32, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(41, activation='softmax'))
opt = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
model.fit(np.array(x_train), np.array(y_train), epochs=5, batch_size=8)
这是我的结果:
Epoch 1/5
7104/7104 [==============================] - 1s 179us/step - loss: 15.7392 - acc: 0.0235
Epoch 2/5
7104/7104 [==============================] - 1s 132us/step - loss: 15.7369 - acc: 0.0236
Epoch 3/5
7104/7104 [==============================] - 1s 133us/step - loss: 15.7415 - acc: 0.0234
Epoch 4/5
7104/7104 [==============================] - 1s 132us/step - loss: 15.7262 - acc: 0.0242
Epoch 5/5
7104/7104 [==============================] - 1s 132us/step - loss: 15.6484 - acc: 0.0291
如您所见,我的结果显示数据丢失非常高,准确性非常低。当我尝试预测结果时,就会出现主要问题。对于每个输入,输出都是相同的。我怎样才能解决这个问题?
pre = model.predict(np.array(x_train), batch_size=8, verbose=0)
for i in pre:
print(i)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
...
```