Keras:非常低的准确性,非常高的损失和每个输入的预测都是相同的

数据挖掘 机器学习 Python 神经网络 喀拉斯
2021-09-15 21:33:26

我正在开发一个使用 keras 进行通用音频标记的系统。

我有以下数据输入:

x_train 每个输入有 10 个不同的数据(数据长度、最大值、最小值等) y_train 表示 41 个可能的标签(吉他、贝司等)

下面是我的代码:

x_train shape = (7104, 10)
y_train shape = (41,)

print(x_train[0])

[ 3.75732000e+05 -2.23437546e-05 -1.17187500e-02  1.30615234e-02
  2.65964586e-03  2.65973969e-03  9.80024859e-02  1.13624850e+00
  1.00003528e+00 -1.11458333e+00] 

print(y_train[0])

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]

我的模型是:

from keras.models import Sequential
from keras.optimizers import SGD
from keras.layers import Dense, Dropout, Activation

model = Sequential()

model.add(Dense(units=128, activation='relu', input_dim=10))
model.add(Dropout(0.5))
model.add(Dense(units=64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=32, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(41, activation='softmax'))

opt = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])

model.fit(np.array(x_train), np.array(y_train), epochs=5, batch_size=8)

这是我的结果:

Epoch 1/5
7104/7104 [==============================] - 1s 179us/step - loss: 15.7392 - acc: 0.0235
Epoch 2/5
7104/7104 [==============================] - 1s 132us/step - loss: 15.7369 - acc: 0.0236
Epoch 3/5
7104/7104 [==============================] - 1s 133us/step - loss: 15.7415 - acc: 0.0234
Epoch 4/5
7104/7104 [==============================] - 1s 132us/step - loss: 15.7262 - acc: 0.0242
Epoch 5/5
7104/7104 [==============================] - 1s 132us/step - loss: 15.6484 - acc: 0.0291

如您所见,我的结果显示数据丢失非常高,准确性非常低。当我尝试预测结果时,就会出现主要问题。对于每个输入,输出都是相同的。我怎样才能解决这个问题?


pre = model.predict(np.array(x_train), batch_size=8, verbose=0)

for i in pre:
    print(i)

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
...

```
0个回答
没有发现任何回复~