当我在我的模型中添加正则化技术(如 L1 或 L2)时,我是否需要更多的时期来正确收敛我的模型。
for r in (None,"L1","L2"):
for max_iter in (30,45,60):
classifier=SGDClassifier(loss="log",penalty=r,max_iter=max_iter,learning_rate="constant",eta0=0.01,random_state=42)
print("max_iter={}".format(max_iter))
classifier.fit(X_train,Y_train)
acc=classifier.score(X_test,Y_test)
print("accuracy when r={} is {}".format(r,acc*100))
- 当 r = 无时:
- max_iter = 30/45它说
ConvergenceWarning: Maximum number of iteration reached before convergence. Consider increasing max_iter to improve the fit.
- max_iter = 60没有警告。
- 当 r = L1 时:
- max_iter= 30相同的警告。
- max_iter = 45/60没有警告。
- 当 r= L2 时:
- max_iter = 30/45/60相同的警告
重要还是这是随机的?