我正在研究图像的多类分类。为此,我在 keras 中创建了一个 CNN 模型。我已经将所有图像预处理为尺寸(150,150,3)。这是模型摘要-
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 146, 146, 32) 2432
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 73, 73, 32) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 71, 71, 64) 18496
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 35, 35, 64) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 33, 33, 64) 36928
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 16, 16, 64) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 14, 14, 128) 73856
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 7, 7, 128) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 6272) 0
_________________________________________________________________
dense_1 (Dense) (None, 300) 1881900
_________________________________________________________________
dense_2 (Dense) (None, 10) 3010
=================================================================
Total params: 2,016,622
Trainable params: 2,016,622
Non-trainable params: 0
我也在使用数据增强和flow_from_directory方法-
train_datagen = image.ImageDataGenerator( rescale = 1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest')
test_datagen = image.ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory( new_train, batch_size=20)
validation_generator = test_datagen.flow_from_directory( new_valid, batch_size=20)
然后我编译模型并运行fit_generator-
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics = ['acc',metrics.categorical_accuracy])
history = model.fit_generator( train_generator, steps_per_epoch=100, epochs=10, validation_data=validation_generator, validation_steps=50)
在这部分我得到错误 -
ValueError:检查输入时出错:预期 conv2d_1_input 的形状为 (150, 150, 3) 但得到的数组的形状为 (256, 256, 3)
我不明白当所有输入图像的大小都是(150、150、3)时,它怎么能得到(256、256、3)?请告诉我哪里出错了。
编辑
我创建模型的代码是-
model = models.Sequential()
model.add(layers.Conv2D(32, (5, 5), activation='relu', input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(300, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
对于图像预处理,我使用了以下 -
for image_name in os.listdir(train_dir):
im = cv2.resize(cv2.imread(os.path.join(train_dir,image_name)), (150, 150)).astype(np.float32)
if image_name in validation_img:
cv2.imwrite(os.path.join(new_valid,image_name), im)
else:
cv2.imwrite(os.path.join(new_train,image_name), im)