我已经开始研究决策树回归器和 KNN 回归器。
我已经建立了模型,但不确定需要考虑哪些指标进行评估。到目前为止,我已经考虑了均方根误差。
我们可以使用决策树和 KNN 的值还是仅适用于线性回归模型
我也贴了和 MSE 值。根据我的理解,线性回归模型是稳定的,决策树过度拟合,KNN 的误差较小。这里需要考虑哪种模型?
R2 Score for train - KNN regression 0.8215942683102192
R2 Score for test - KNN regression 0.7160388084850589
Mean squared error for train - KNN regression 49.92162362176166
Mean squared error for test - KNN regression 78.30907381395349
R2 Score for train - linear regression 0.6141419744748021
R2 Score for test - linear regression 0.6117893766210736
Mean squared error for train - linear regression 107.97107771851036
Mean squared error for test - linear regression 107.0583420197463
R2 Score for train - Decision Tree regression 0.9962039204515297
R2 Score for test - Decision Tree regression 0.7866182225490949
Mean squared error for train - Decision tree regression 1.0622217832469776
Mean squared error for test - Decision tree regression 58.84511637596899
更新 AIC 和 BIC 值
AIC value - Test - KNN : -3.8272461328797505
BIC value - Test - KNN : 1169.4748549110836
AIC value - Test - Linear Reg: -4.452667046616746
BIC value - Test - Linear Reg: 1250.154152783156
AIC value - Test - Decision T: -3.2766787253336602
BIC value - Test - Decision T: 1098.4516593376377
谢谢你。