我正在使用 Xgboost 进行分类。我y是 0 或 1(真或假)。我有分类和数字特征,所以理论上,我需要使用 SMOTE-NC 而不是 SMOTE。但是,我使用 SMOTE 获得了更好的结果。
谁能解释为什么会这样?
另外,如果我对分类数据使用一些编码器(BinaryEncoder、one hot 等),我需要在编码之后还是之前使用 SMOTE-NC?
我复制了我的示例代码(x并且y在清理之后,包括 BinaryEncoder)。
_train, X_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=1)
smt = SMOTE()
X_resampled, y_resampled = smt.fit_resample(X_train, y_train)
params_model1 = {
'booster': ['dart', 'gbtree', 'gblinear'],
'learning_rate': [0.001, 0.01, 0.05, 0.1],
'min_child_weight': [1, 5, 10, 15, 20],
'gamma': [0, 0.5, 1, 1.5, 2, 5],
'subsample': [0.6, 0.8, 1.0],
'colsample_bytree': [0.6, 0.8, 1.0],
'max_depth': [3, 4, 5, 6, 7, 8],
'max_delta_step': [0, 1, 2, 3, 5, 10],
'base_score': [0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65],
'reg_alpha': [0, 0.5, 1, 1.5, 2],
'reg_lambda': [0, 0.5, 1, 1.5, 2],
'n_estimators': [100, 200, 500]
}
skf = StratifiedKFold(n_splits=3, shuffle=True, random_state=1001)
xgb = XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=0.3, gamma=1,
learning_rate=0.1, max_delta_step=0, max_depth=10,
min_child_weight=5, missing=None, n_estimators=1000, n_jobs=1,
nthread=None, objective='binary:logistic', random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
silent=None, subsample=0.8, verbosity=1)
scoring = 'f1'
rs_xgb = RandomizedSearchCV(xgb, param_distributions=params_model1, n_iter=1,
scoring=scoring, n_jobs=4, cv=skf.split(X_resampled, y_resampled), verbose=3,
random_state=1001)
rs_xgb.fit(X_resampled, y_resampled)
refit = rs_xgb.best_estimator_
joblib.dump(refit, 'validator1.pkl')
loaded_xgb = joblib.load('validator1.pkl')
y_predict = loaded_xgb.predict(X_val.as_matrix())
print(confusion_matrix(y_val, y_predict))
print("Final result " + str(f1_score(y_val, y_predict)))