在月球着陆器环境下,DDPG如何处理移动目标?

人工智能 强化学习 深度学习 演员批评方法 ddpg 健身房
2021-10-19 23:54:57

我注意到 DDPG 在解决具有静态目标的环境方面做得相当好。

例如,月球着陆器的默认设置,旗帜不改变位置。因此 DDPG 模型学会了如何快速到达屏幕中心并着陆。

一旦我开始随机移动着陆位置并将着陆位置作为输入添加到模型中,模型就很难将这种连接放在一起。

关于将这种复杂性添加到环境中的一些问题/要点:

  1. 每层更多节点或更多层是否有助于找出这种连接?我已经对此进行了测试,但似乎我走的越大,学习任何东西就越难。
  2. 很难连接数据是一个常见的 RL AI 问题吗?
  3. 我意识到我可以将环境更改为始终有一个静态目标,而不是更改月球着陆器的位置,这实际上完成了同样的事情,但想知道我们是否可以通过移动目标来解决它
  4. 有没有关于 Actor/Critic 分析模型的好的文档?我有一些结果,我的批评者目标正在下降,但我的批评者损失正在下降。与此同时,我的演员目标不断上升,最终达到平稳状态。很难真正理解正在发生的事情,理解演员损失、评论家损失和评论家目标会很好。

本质上,我添加了一个随机整数(标志的左侧),添加 1 以获得着陆中间的 x 位置,再添加 1 以获得标志的距离为 11 个块中的 3 个。

rand_chunk = random.randint(0, CHUNKS-3)
self.x_pos_middle_landing = chunk_x[rand_chunk + 1]
self.helipad_x1 = chunk_x[rand_chunk]
self.helipad_x2 = chunk_x[rand_chunk + 2]
height[rand_chunk] = self.helipad_y
height[rand_chunk + 1] = self.helipad_y
height[rand_chunk + 2] = self.helipad_y

旧州:

state = [
        (pos.x - VIEWPORT_W/SCALE/2) / (VIEWPORT_W/SCALE/2),
        (pos.y - (self.helipad_y+LEG_DOWN/SCALE)) / (VIEWPORT_H/SCALE/2),
        vel.x*(VIEWPORT_W/SCALE/2)/FPS,
        vel.y*(VIEWPORT_H/SCALE/2)/FPS,
        self.lander.angle,
        20.0*self.lander.angularVelocity/FPS,
        1.0 if self.legs[0].ground_contact else 0.0,
        1.0 if self.legs[1].ground_contact else 0.0
        ]

添加到 State,与 state[0] 相同,但使用中间 3 进行着陆

(self.x_pos_middle_landing - VIEWPORT_W/SCALE/2) / (VIEWPORT_W/SCALE/2)

并将 obs 空间从 8 个空间更新为 9 个

self.observation_space = spaces.Box(-np.inf, np.inf, shape=(9,), dtype=np.float32)

奖励需要更新,旧奖励:

shaping = \
        - 100*np.sqrt(state[0]*state[0] + state[1]*state[1]) \
        - 100*np.sqrt(state[2]*state[2] + state[3]*state[3]) \
        - 100*abs(state[4]) + 10*state[6] + 10*state[7]  # And ten points for legs contact, the idea is if you

新奖励:

shaping = \
        - 100*np.sqrt((state[0]-state[8])*(state[0]-state[8]) + state[1]*state[1]) \
        - 100*np.sqrt(state[2]*state[2] + state[3]*state[3]) \
        - 100*abs(state[4]) + 10*state[6] + 10*state[7]  # And ten points for legs contact, the idea is if you

DDPG模型

    import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import gym
from tensorflow.keras.models import load_model
import os
import envs
import time
import scipy.stats as stats
# from stable_baselines.common.policies import MlpPolicy, MlpLstmPolicy
from stable_baselines.common.vec_env import SubprocVecEnv, DummyVecEnv, VecCheckNan
from stable_baselines.common import set_global_seeds, make_vec_env
from stable_baselines.ddpg import DDPG
from stable_baselines.ddpg.policies import MlpPolicy
# from stable_baselines.sac.policies import MlpPolicy
from stable_baselines import PPO2, SAC
from stable_baselines.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise, AdaptiveParamNoiseSpec

if __name__ == '__main__':
    num_cpu = 1  # Number of processes to use
    env = SubprocVecEnv([make_env(env_id, i) for i in range(num_cpu)])
    env = VecCheckNan(env, raise_exception=True, check_inf=True)
    n_actions = env.action_space.shape[-1]

    #### DDPG
    policy_kwargs = dict(act_fun=tf.nn.sigmoid, layers=[512, 512, 512], layer_norm=False)
    param_noise = None
    # action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.5) * np.ones(n_actions))
    action_noise = NormalActionNoise(0, 0.1)
    model = DDPG

    # # Train Model
    model.learn(total_timesteps=int(3e5))
    model.save('./models/lunar_lander')

完整代码:

    """
Rocket trajectory optimization is a classic topic in Optimal Control.

According to Pontryagin's maximum principle it's optimal to fire engine full throttle or
turn it off. That's the reason this environment is OK to have discreet actions (engine on or off).

The landing pad is always at coordinates (0,0). The coordinates are the first two numbers in the state vector.
Reward for moving from the top of the screen to the landing pad and zero speed is about 100..140 points.
If the lander moves away from the landing pad it loses reward. The episode finishes if the lander crashes or
comes to rest, receiving an additional -100 or +100 points. Each leg with ground contact is +10 points.
Firing the main engine is -0.3 points each frame. Firing the side engine is -0.03 points each frame.
Solved is 200 points.

Landing outside the landing pad is possible. Fuel is infinite, so an agent can learn to fly and then land
on its first attempt. Please see the source code for details.

To see a heuristic landing, run:

python gym/envs/box2d/lunar_lander.py

To play yourself, run:

python examples/agents/keyboard_agent.py LunarLander-v2

Created by Oleg Klimov. Licensed on the same terms as the rest of OpenAI Gym.
"""


import sys, math
import numpy as np
import random

import Box2D
from Box2D.b2 import (edgeShape, circleShape, fixtureDef, polygonShape, revoluteJointDef, contactListener)

import gym
from gym import spaces
from gym.utils import seeding, EzPickle

FPS = 50
SCALE = 30.0   # affects how fast-paced the game is, forces should be adjusted as well

MAIN_ENGINE_POWER = 13.0
SIDE_ENGINE_POWER = 0.6

INITIAL_RANDOM = 1000.0   # Set 1500 to make game harder

LANDER_POLY =[
    (-14, +17), (-17, 0), (-17 ,-10),
    (+17, -10), (+17, 0), (+14, +17)
    ]
LEG_AWAY = 20
LEG_DOWN = 18
LEG_W, LEG_H = 2, 8
LEG_SPRING_TORQUE = 40

SIDE_ENGINE_HEIGHT = 14.0
SIDE_ENGINE_AWAY = 12.0

VIEWPORT_W = 600
VIEWPORT_H = 400


class ContactDetector(contactListener):
    def __init__(self, env):
        contactListener.__init__(self)
        self.env = env

    def BeginContact(self, contact):
        if self.env.lander == contact.fixtureA.body or self.env.lander == contact.fixtureB.body:
            self.env.game_over = True
        for i in range(2):
            if self.env.legs[i] in [contact.fixtureA.body, contact.fixtureB.body]:
                self.env.legs[i].ground_contact = True

    def EndContact(self, contact):
        for i in range(2):
            if self.env.legs[i] in [contact.fixtureA.body, contact.fixtureB.body]:
                self.env.legs[i].ground_contact = False


class LunarLander(gym.Env, EzPickle):
    metadata = {
        'render.modes': ['human', 'rgb_array'],
        'video.frames_per_second' : FPS
    }

    continuous = False

    def __init__(self):
        EzPickle.__init__(self)
        self.seed()
        self.viewer = None

        self.world = Box2D.b2World()
        self.moon = None
        self.lander = None
        self.particles = []

        self.prev_reward = None

        # useful range is -1 .. +1, but spikes can be higher
        self.observation_space = spaces.Box(-np.inf, np.inf, shape=(9,), dtype=np.float32)

        if self.continuous:
            # Action is two floats [main engine, left-right engines].
            # Main engine: -1..0 off, 0..+1 throttle from 50% to 100% power. Engine can't work with less than 50% power.
            # Left-right:  -1.0..-0.5 fire left engine, +0.5..+1.0 fire right engine, -0.5..0.5 off
            self.action_space = spaces.Box(-1, +1, (2,), dtype=np.float32)
        else:
            # Nop, fire left engine, main engine, right engine
            self.action_space = spaces.Discrete(4)

        self.reset()

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def _destroy(self):
        if not self.moon: return
        self.world.contactListener = None
        self._clean_particles(True)
        self.world.DestroyBody(self.moon)
        self.moon = None
        self.world.DestroyBody(self.lander)
        self.lander = None
        self.world.DestroyBody(self.legs[0])
        self.world.DestroyBody(self.legs[1])

    def reset(self):
        self._destroy()
        self.world.contactListener_keepref = ContactDetector(self)
        self.world.contactListener = self.world.contactListener_keepref
        self.game_over = False
        self.prev_shaping = None

        W = VIEWPORT_W/SCALE
        H = VIEWPORT_H/SCALE

        # terrain
        CHUNKS = 11
        height = self.np_random.uniform(0, H/2, size=(CHUNKS+1,))
        chunk_x = [W/(CHUNKS-1)*i for i in range(CHUNKS)]
        rand_chunk = random.randint(0, CHUNKS-3)
        self.x_pos_middle_landing = chunk_x[rand_chunk + 1]
        self.helipad_x1 = chunk_x[rand_chunk]
        self.helipad_x2 = chunk_x[rand_chunk + 2]
        self.helipad_y = H/4
        height[rand_chunk] = self.helipad_y
        height[rand_chunk + 1] = self.helipad_y
        height[rand_chunk + 2] = self.helipad_y

        self.moon = self.world.CreateStaticBody(shapes=edgeShape(vertices=[(0, 0), (W, 0)]))
        self.sky_polys = []
        for i in range(CHUNKS-1):
            p1 = (chunk_x[i], height[i])
            p2 = (chunk_x[i+1], height[i+1])
            self.moon.CreateEdgeFixture(
                vertices=[p1,p2],
                density=0,
                friction=0.1)
            self.sky_polys.append([p1, p2, (p2[0], H), (p1[0], H)])

        self.moon.color1 = (0.0, 0.0, 0.0)
        self.moon.color2 = (0.0, 0.0, 0.0)

        initial_y = VIEWPORT_H/SCALE
        self.lander = self.world.CreateDynamicBody(
            position=(VIEWPORT_W/SCALE/2, initial_y),
            angle=0.0,
            fixtures = fixtureDef(
                shape=polygonShape(vertices=[(x/SCALE, y/SCALE) for x, y in LANDER_POLY]),
                density=5.0,
                friction=0.1,
                categoryBits=0x0010,
                maskBits=0x001,   # collide only with ground
                restitution=0.0)  # 0.99 bouncy
                )
        self.lander.color1 = (0.5, 0.4, 0.9)
        self.lander.color2 = (0.3, 0.3, 0.5)
        self.lander.ApplyForceToCenter( (
            self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM),
            self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM)
            ), True)

        self.legs = []
        for i in [-1, +1]:
            leg = self.world.CreateDynamicBody(
                position=(VIEWPORT_W/SCALE/2 - i*LEG_AWAY/SCALE, initial_y),
                angle=(i * 0.05),
                fixtures=fixtureDef(
                    shape=polygonShape(box=(LEG_W/SCALE, LEG_H/SCALE)),
                    density=1.0,
                    restitution=0.0,
                    categoryBits=0x0020,
                    maskBits=0x001)
                )
            leg.ground_contact = False
            leg.color1 = (0.5, 0.4, 0.9)
            leg.color2 = (0.3, 0.3, 0.5)
            rjd = revoluteJointDef(
                bodyA=self.lander,
                bodyB=leg,
                localAnchorA=(0, 0),
                localAnchorB=(i * LEG_AWAY/SCALE, LEG_DOWN/SCALE),
                enableMotor=True,
                enableLimit=True,
                maxMotorTorque=LEG_SPRING_TORQUE,
                motorSpeed=+0.3 * i  # low enough not to jump back into the sky
                )
            if i == -1:
                rjd.lowerAngle = +0.9 - 0.5  # The most esoteric numbers here, angled legs have freedom to travel within
                rjd.upperAngle = +0.9
            else:
                rjd.lowerAngle = -0.9
                rjd.upperAngle = -0.9 + 0.5
            leg.joint = self.world.CreateJoint(rjd)
            self.legs.append(leg)

        self.drawlist = [self.lander] + self.legs

        return self.step(np.array([0, 0]) if self.continuous else 0)[0]

    def _create_particle(self, mass, x, y, ttl):
        p = self.world.CreateDynamicBody(
            position = (x, y),
            angle=0.0,
            fixtures = fixtureDef(
                shape=circleShape(radius=2/SCALE, pos=(0, 0)),
                density=mass,
                friction=0.1,
                categoryBits=0x0100,
                maskBits=0x001,  # collide only with ground
                restitution=0.3)
                )
        p.ttl = ttl
        self.particles.append(p)
        self._clean_particles(False)
        return p

    def _clean_particles(self, all):
        while self.particles and (all or self.particles[0].ttl < 0):
            self.world.DestroyBody(self.particles.pop(0))

    def step(self, action):
        if self.continuous:
            action = np.clip(action, -1, +1).astype(np.float32)
        else:
            assert self.action_space.contains(action), "%r (%s) invalid " % (action, type(action))

        # Engines
        tip  = (math.sin(self.lander.angle), math.cos(self.lander.angle))
        side = (-tip[1], tip[0])
        dispersion = [self.np_random.uniform(-1.0, +1.0) / SCALE for _ in range(2)]

        m_power = 0.0
        if (self.continuous and action[0] > 0.0) or (not self.continuous and action == 2):
            # Main engine
            if self.continuous:
                m_power = (np.clip(action[0], 0.0,1.0) + 1.0)*0.5   # 0.5..1.0
                assert m_power >= 0.5 and m_power <= 1.0
            else:
                m_power = 1.0
            ox = (tip[0] * (4/SCALE + 2 * dispersion[0]) +
                side[0] * dispersion[1])  # 4 is move a bit downwards, +-2 for randomness
            oy = -tip[1] * (4/SCALE + 2 * dispersion[0]) - side[1] * dispersion[1]
            impulse_pos = (self.lander.position[0] + ox, self.lander.position[1] + oy)
            p = self._create_particle(3.5,  # 3.5 is here to make particle speed adequate
                                    impulse_pos[0],
                                    impulse_pos[1],
                                    m_power)  # particles are just a decoration
            p.ApplyLinearImpulse((ox * MAIN_ENGINE_POWER * m_power, oy * MAIN_ENGINE_POWER * m_power),
                                impulse_pos,
                                True)
            self.lander.ApplyLinearImpulse((-ox * MAIN_ENGINE_POWER * m_power, -oy * MAIN_ENGINE_POWER * m_power),
                                        impulse_pos,
                                        True)

        s_power = 0.0
        if (self.continuous and np.abs(action[1]) > 0.5) or (not self.continuous and action in [1, 3]):
            # Orientation engines
            if self.continuous:
                direction = np.sign(action[1])
                s_power = np.clip(np.abs(action[1]), 0.5, 1.0)
                assert s_power >= 0.5 and s_power <= 1.0
            else:
                direction = action-2
                s_power = 1.0
            ox = tip[0] * dispersion[0] + side[0] * (3 * dispersion[1] + direction * SIDE_ENGINE_AWAY/SCALE)
            oy = -tip[1] * dispersion[0] - side[1] * (3 * dispersion[1] + direction * SIDE_ENGINE_AWAY/SCALE)
            impulse_pos = (self.lander.position[0] + ox - tip[0] * 17/SCALE,
                        self.lander.position[1] + oy + tip[1] * SIDE_ENGINE_HEIGHT/SCALE)
            p = self._create_particle(0.7, impulse_pos[0], impulse_pos[1], s_power)
            p.ApplyLinearImpulse((ox * SIDE_ENGINE_POWER * s_power, oy * SIDE_ENGINE_POWER * s_power),
                                impulse_pos
                                , True)
            self.lander.ApplyLinearImpulse((-ox * SIDE_ENGINE_POWER * s_power, -oy * SIDE_ENGINE_POWER * s_power),
                                        impulse_pos,
                                        True)

        self.world.Step(1.0/FPS, 6*30, 2*30)

        pos = self.lander.position
        vel = self.lander.linearVelocity
        state = [
            (pos.x - VIEWPORT_W/SCALE/2) / (VIEWPORT_W/SCALE/2),
            (pos.y - (self.helipad_y+LEG_DOWN/SCALE)) / (VIEWPORT_H/SCALE/2),
            vel.x*(VIEWPORT_W/SCALE/2)/FPS,
            vel.y*(VIEWPORT_H/SCALE/2)/FPS,
            self.lander.angle,
            20.0*self.lander.angularVelocity/FPS,
            1.0 if self.legs[0].ground_contact else 0.0,
            1.0 if self.legs[1].ground_contact else 0.0,
            (self.x_pos_middle_landing - VIEWPORT_W/SCALE/2) / (VIEWPORT_W/SCALE/2)
            ]
        assert len(state) == 9

        reward = 0
        shaping = \
            - 100*np.sqrt((state[0]-state[8])*(state[0]-state[8]) + state[1]*state[1]) \
            - 100*np.sqrt(state[2]*state[2] + state[3]*state[3]) \
            - 100*abs(state[4]) + 10*state[6] + 10*state[7]  # And ten points for legs contact, the idea is if you
                                                            # lose contact again after landing, you get negative reward
        if self.prev_shaping is not None:
            reward = shaping - self.prev_shaping
        self.prev_shaping = shaping

        reward -= m_power*0.30  # less fuel spent is better, about -30 for heuristic landing
        reward -= s_power*0.03

        done = False
        if self.game_over or abs(state[0]) >= 1.0:
            done = True
            reward = -100
        if not self.lander.awake:
            done = True
            reward = +100
        return np.array(state, dtype=np.float32), reward, done, {}

    def render(self, mode='human'):
        from gym.envs.classic_control import rendering
        if self.viewer is None:
            self.viewer = rendering.Viewer(VIEWPORT_W, VIEWPORT_H)
            self.viewer.set_bounds(0, VIEWPORT_W/SCALE, 0, VIEWPORT_H/SCALE)

        for obj in self.particles:
            obj.ttl -= 0.15
            obj.color1 = (max(0.2, 0.2+obj.ttl), max(0.2, 0.5*obj.ttl), max(0.2, 0.5*obj.ttl))
            obj.color2 = (max(0.2, 0.2+obj.ttl), max(0.2, 0.5*obj.ttl), max(0.2, 0.5*obj.ttl))

        self._clean_particles(False)

        for p in self.sky_polys:
            self.viewer.draw_polygon(p, color=(0, 0, 0))

        for obj in self.particles + self.drawlist:
            for f in obj.fixtures:
                trans = f.body.transform
                if type(f.shape) is circleShape:
                    t = rendering.Transform(translation=trans*f.shape.pos)
                    self.viewer.draw_circle(f.shape.radius, 20, color=obj.color1).add_attr(t)
                    self.viewer.draw_circle(f.shape.radius, 20, color=obj.color2, filled=False, linewidth=2).add_attr(t)
                else:
                    path = [trans*v for v in f.shape.vertices]
                    self.viewer.draw_polygon(path, color=obj.color1)
                    path.append(path[0])
                    self.viewer.draw_polyline(path, color=obj.color2, linewidth=2)

        for x in [self.helipad_x1, self.helipad_x2]:
            flagy1 = self.helipad_y
            flagy2 = flagy1 + 50/SCALE
            self.viewer.draw_polyline([(x, flagy1), (x, flagy2)], color=(1, 1, 1))
            self.viewer.draw_polygon([(x, flagy2), (x, flagy2-10/SCALE), (x + 25/SCALE, flagy2 - 5/SCALE)],
                                    color=(0.8, 0.8, 0))

        return self.viewer.render(return_rgb_array=mode == 'rgb_array')

    def close(self):
        if self.viewer is not None:
            self.viewer.close()
            self.viewer = None


class RandomTargetLunarLander(LunarLander):
    continuous = True

def heuristic(env, s):
    """
    The heuristic for
    1. Testing
    2. Demonstration rollout.

    Args:
        env: The environment
        s (list): The state. Attributes:
                s[0] is the horizontal coordinate
                s[1] is the vertical coordinate
                s[2] is the horizontal speed
                s[3] is the vertical speed
                s[4] is the angle
                s[5] is the angular speed
                s[6] 1 if first leg has contact, else 0
                s[7] 1 if second leg has contact, else 0
                s[8] is the target coordinate
    returns:
        a: The heuristic to be fed into the step function defined above to determine the next step and reward.
    """

    angle_targ = s[0]*0.5 + s[2]*1.0         # angle should point towards center
    if angle_targ > 0.4: angle_targ = 0.4    # more than 0.4 radians (22 degrees) is bad
    if angle_targ < -0.4: angle_targ = -0.4
    hover_targ = 0.55*np.abs(s[0])           # target y should be proportional to horizontal offset

    angle_todo = (angle_targ - s[4]) * 0.5 - (s[5])*1.0
    hover_todo = (hover_targ - s[1])*0.5 - (s[3])*0.5

    if s[6] or s[7]:  # legs have contact
        angle_todo = 0
        hover_todo = -(s[3])*0.5  # override to reduce fall speed, that's all we need after contact

    if env.continuous:
        a = np.array([hover_todo*20 - 1, -angle_todo*20])
        a = np.clip(a, -1, +1)
    else:
        a = 0
        if hover_todo > np.abs(angle_todo) and hover_todo > 0.05: a = 2
        elif angle_todo < -0.05: a = 3
        elif angle_todo > +0.05: a = 1
    return a

def demo_heuristic_lander(env, seed=None, render=False):
    env.seed(seed)
    total_reward = 0
    steps = 0
    s = env.reset()
    while True:
        a = heuristic(env, s)
        s, r, done, info = env.step(a)
        total_reward += r

        if render:
            still_open = env.render()
            if still_open == False: break

        if steps % 20 == 0 or done:
            print("observations:", " ".join(["{:+0.2f}".format(x) for x in s]))
            print("step {} total_reward {:+0.2f}".format(steps, total_reward))
        steps += 1
        if done: break
    return total_reward


if __name__ == '__main__':
    demo_heuristic_lander(LunarLander(), render=True)

结果如下: 绿色是正常月球着陆器连续粉红色是随机目标月球着陆器连续

结果_1 结果_2 结果_3

0个回答
没有发现任何回复~