各种语言/框架中最好的 FGMRES 实现是什么?特别是,是否有任何质量好的 Matlab 实现?
我指的是 GMRES 的变化,其中通过跟踪预条件向量来允许变化或非线性预条件子,正如 Saad 的论文中所讨论的,
萨德,尤瑟夫。“一种灵活的内外预处理 GMRES 算法。” SIAM 科学计算杂志 14.2 (1993): 461-469。http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4854&rep=rep1&type=pdf
它看起来很容易实现,但我知道如果简单地实现 Krylov 方法有时会出现数值问题(例如,CG 中的正交性丢失)。
编辑: 这是我的简单的 MATLAB 实现,它似乎工作正常,以防阅读这个线程的任何人都需要一个可以工作但没有高度优化的 matlab 版本。
function [x,X] = fgmres(A,b,m,tol,maxit,P,x0)
%Flexible GMRES (FGMRES) with restart length m.
%Solves Ax = b to tolerance tol using preconditioner P and initial guess x0
%If P is a function handle, P(A) =approx= I.
%If P is a matrix, P\A =approx= I.
%Optional output X is the whole sequence of FGMRES iterates
%Written by Nick Alger 6/10/2014, released to public domain.
%Reference:
%Saad, "A flexible inner-outer preconditioned GMRES algorithm", SIAM 1993
%Parse input
N = size(b,1);
if (isa(A,'numeric'))
if (size(A,1) == N && size(A,2) == N)
Afct = @(u) A*u;
else
error(['Dimensions of A and b in Ax = b are not consistent: '...
'A is ', num2str(size(A,1)),'-by-', num2str(size(A,2)),', and '...
'b is ', num2str(size(b,1)),'-by-', num2str(size(b,2)),'.']);
end
elseif (isa(A,'function_handle'))
Afct = A;
else
error('Forward operator needs to be a matrix or function handle.')
end
if (nargin < 3 || isempty(m))
m = 50; %Default restart
end
if (nargin < 4 || isempty(tol))
tol = 1e-6;
end
if (nargin < 5 || isempty(maxit))
maxit = min(N,200);
end
if (nargin < 6 || isempty(P))
Pfct = @(u) u;
elseif (isa(P,'numeric'))
Pfct = @(u) P\u;
elseif (isa(P,'function_handle'))
Pfct = P;
else
error('Preconditioner needs to be a matrix or function handle.')
end
if (nargin < 7 || isempty(x0))
x0 = zeros(size(b));
end
%Run FGMRES
X = [];
nit = 1;
while (nit <= maxit)
disp('Starting new FGMRES cycle')
H = zeros(m+1,m);
r0 = b - Afct(x0);
beta = norm(r0);
V = zeros(N, m+1);
V(:,1) = (1/beta)*r0;
Z = zeros(N,m);
for j=1:m
Z(:,j) = Pfct(V(:,j));
w = Afct(Z(:,j));
for i=1:j
H(i,j) = w'*V(:,i);
w = w - H(i,j)*V(:,i);
end
H(j+1, j) = norm(w);
V(:, j+1) = (1/H(j+1, j))*w;
e1 = zeros(j+1,1); e1(1) = 1;
y = H(1 : j+1, 1:j)\(beta*e1);
x = x0 + Z(:, 1:j)*y;
if (nargout > 1)
X = [X,x];
end
resnorm = norm(b-Afct(x));
disp(['k= ', num2str(nit), ...
', relative residual= ', num2str(resnorm/norm(b))])
if (resnorm < tol*norm(b))
disp(['FGMRES converged to relative tolerance ', ...
num2str(resnorm/norm(b)), ...
' at iteration ', ...
num2str(nit)])
return
end
nit = nit + 1;
if (nit > maxit)
break;
end
end
x0 = x;
end