我正在使用样本藻类数据来更多地了解数据挖掘。我使用了以下命令:
data(algae)
algae <- algae[-manyNAs(algae),]
clean.algae <-knnImputation(algae, k = 10)
lm.a1 <- lm(a1 ~ ., data = clean.algae[, 1:12])
summary(lm.a1)
随后我收到了以下结果。但是,我找不到任何好的文档来解释其中的大部分含义,尤其是 Std。误差、t 值和 Pr。
有人可以请好心一点吗?最重要的是,我应该查看哪些变量来确定模型是否为我提供了良好的预测数据?
Call:
lm(formula = a1 ~ ., data = clean.algae[, 1:12])
Residuals:
Min 1Q Median 3Q Max
-37.679 -11.893 -2.567 7.410 62.190
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.942055 24.010879 1.788 0.07537 .
seasonspring 3.726978 4.137741 0.901 0.36892
seasonsummer 0.747597 4.020711 0.186 0.85270
seasonwinter 3.692955 3.865391 0.955 0.34065
sizemedium 3.263728 3.802051 0.858 0.39179
sizesmall 9.682140 4.179971 2.316 0.02166 *
speedlow 3.922084 4.706315 0.833 0.40573
speedmedium 0.246764 3.241874 0.076 0.93941
mxPH -3.589118 2.703528 -1.328 0.18598
mnO2 1.052636 0.705018 1.493 0.13715
Cl -0.040172 0.033661 -1.193 0.23426
NO3 -1.511235 0.551339 -2.741 0.00674 **
NH4 0.001634 0.001003 1.628 0.10516
oPO4 -0.005435 0.039884 -0.136 0.89177
PO4 -0.052241 0.030755 -1.699 0.09109 .
Chla -0.088022 0.079998 -1.100 0.27265
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 17.65 on 182 degrees of freedom
Multiple R-squared: 0.3731, Adjusted R-squared: 0.3215
F-statistic: 7.223 on 15 and 182 DF, p-value: 2.444e-12