我正在考虑使用套索作为选择特征和用二进制目标拟合预测模型的方法。下面是我正在使用的一些代码,用于尝试使用正则化逻辑回归的方法。
我的问题是我得到了一组“重要”变量,但我能否对这些变量进行排序以估计每个变量的相对重要性?系数是否可以为此按绝对值进行排名而标准化(我知道它们通过coef
函数显示在原始变量尺度上)?如果是这样,如何做到这一点(使用 x 和 y 的标准差)标准化回归系数。
示例代码:
library(glmnet)
#data comes from
#http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
datasetTest <- read.csv('C:/Documents and Settings/E997608/Desktop/wdbc.data.txt',head=FALSE)
#appears to use the first level as the target success
datasetTest$V2<-as.factor(ifelse(as.character(datasetTest$V2)=="M","0","1"))
#cross validation to find optimal lambda
#using the lasso because alpha=1
cv.result<-cv.glmnet(
x=as.matrix(dataset[,3:ncol(datasetTest)]),
y=datasetTest[,2],
family="binomial",
nfolds=10,
type.measure="deviance",
alpha=1
)
#values of lambda used
histogram(cv.result$lambda)
#plot of the error measure (here was deviance)
#as a CI from each of the 10 folds
#for each value of lambda (log actually)
plot(cv.result)
#the mean cross validation error (one for each of the
#100 values of lambda
cv.result$cvm
#the value of lambda that minimzes the error measure
#result: 0.001909601
cv.result$lambda.min
log(cv.result$lambda.min)
#the value of lambda that minimzes the error measure
#within 1 SE of the minimum
#result: 0.007024236
cv.result$lambda.1se
#the full sequence was fit in the object called cv.result$glmnet.fit
#this is same as a call to it directly.
#here are the coefficients from the min lambda
coef(cv.result$glmnet.fit,s=cv.result$lambda.1se)