统计学习的要素 - 第页的问题。12

数据挖掘 线性回归
2022-02-10 12:56:37

我开始研究统计学习的要素,并且马上就遇到了我不理解的事情。我会感谢这个社区的任何帮助。如果这不是发布这些问题的合适论坛,请告诉我(在这种情况下,如果您感觉特别好,请指点我到正确的论坛)。

在第 12 页,作者介绍了熟悉的线性回归表达式:

Y-hat = X-转置 * β

作者接着说:

这里我们对单个输出进行建模,所以 Y-hat 是一个标量;一般来说,Y-hat 可以是一个 K 向量,在这种情况下,β 将是 ap×K 的系数矩阵。在 (p + 1) 维输入-输出空间中,(X, Y-hat) 表示一个超平面。如果常数包含在 X 中,则超平面包含原点并且是子空间;

问题:

  1. 假设 Y 是标量而不是 K 向量,输入输出空间是否只有 p+1 维?如果 Y 是一个 K 向量,那么输入-输出空间是否是 p+K 维的?
  2. “(X,Y-hat)代表超平面”这句话是什么意思?假设 X-transpose 是一个单列向量,表示只有一个输入变量这一事实,你能帮我想象一下超平面的样子吗?

先感谢您!

1个回答

你是对的,在 p+1 时,它又回到了谈论 K=1 的情况。p 个输入产生 1 个输出。线性函数β您将 p 维 X 映射到包含“输出”的 p+1 维空间的 p 维子空间,它特别是一个超平面。尝试绘图z=3x+2y在图形计算器中快速直观地了解 p=2 输入的单个输出的感觉。