分类器的加权线性组合

数据挖掘 分类 集成建模
2022-01-19 12:58:33

我正在尝试构建一个分类器集合,我希望我的算法能够学习一组权重,以便它可以对一组数据点的不同分类器的输出进行加权。

我想知道,我将如何学习这些权重?我尝试使用自动微分,但权重根本没有移动(没有梯度信息)。

有谁知道我该如何解决这个问题?

1个回答

我不知道如何解决您的自动差异化问题,但我可以向您展示当我想要实现相同目标时我做了什么(我也看到其他人也做了)。您可以在要集成的分类器的输出上拟合线性元分类器。这是我的 scikit 工具箱中的实现:

'''
-------------------------------------------------------
    Stack Classifier - extrakit-learn

    Author: Simon Larsson <larssonsimon0@gmail.com>

    License: MIT
-------------------------------------------------------
'''

from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
import numpy as np

class StackClassifier(BaseEstimator, ClassifierMixin):
    ''' Stack Classifier

    Ensemble classifier that uses one meta classifiers and several sub-classifiers.
    The sub-classifiers give their output to to the meta classifier which will use
    them as input features.

    Parameters
    ----------
    clfs : Classifiers who's output will assist the meta_clf, list classifier

    meta_clf : Ensemble classifier that makes the final output, classifier

    drop_first : Drop first class probability to avoid multi-collinearity, bool

    keep_features : If original input features should be used by meta_clf, bool

    refit : If sub-classifiers should be refit, bool
    '''

    def __init__(self, clfs, meta_clf, drop_first=True, keep_features=False, refit=True):
        self.clfs = clfs
        self.meta_clf = meta_clf
        self.drop_first = drop_first
        self.keep_features = keep_features
        self.refit = refit

    def fit(self, X, y):
        ''' Fitting of the classifier

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The training input samples.

        y : array-like, shape (n_samples,)
            The target values. An array of int.

        Returns
        -------
        self : object
            Returns self.
        '''

        X, y = check_X_y(X, y, accept_sparse=True)

        # Refit of classifier ensemble
        if self.refit:
            for clf in self.clfs:
                clf.fit(X, y)

        # Build new tier-2 features
        X_meta = build_meta_X(self.clfs, X, self.keep_features)

        # Fit meta classifer, Stack the ensemble
        self.meta_clf.fit(X_meta, y)

        # set attributes
        self.n_features_ = X.shape[1]
        self.n_meta_features_ = X_meta.shape[1]
        self.n_clfs_ = len(self.clfs)

        return self

    def predict_proba(self, X):
        ''' Probability prediction

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            The prediction input samples.

        Returns
        -------
        y : ndarray, shape (n_samples,)
            Returns an array of probabilities, floats.
        '''

        X = check_array(X, accept_sparse=True)
        check_is_fitted(self, 'n_features_')

        # Build new tier-2 features
        X_meta = build_meta_X(self.clfs, X, self.keep_features)

        return self.meta_clf.predict_proba(X_meta)

    def predict(self, X):
        ''' Classification

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            The prediction input samples.

        Returns
        -------
        y : ndarray, shape (n_samples,)
            Returns an array of classifications, bools.
        '''

        X = check_array(X, accept_sparse=True)
        check_is_fitted(self, 'n_features_')

        # Build new tier-2 features
        X_meta = build_meta_X(self.clfs, X, self.keep_features)

        return self.meta_clf.predict(X_meta)

def build_meta_X(clfs, X=None, drop_first=True, keep_features=False):
    ''' Build features that includes outputs of the sub-classifiers

    Parameters
    ----------
    clfs : Classifiers that who's output will assist the meta_clf, list classifier

    X : {array-like, sparse matrix}, shape (n_samples, n_features)
        The prediction input samples.

    drop_first : Drop first proba to avoid multi-collinearity, bool

    keep_features : If original input features should be used by meta_clf, bool

    Returns
    -------
    X_meta : {array-like, sparse matrix}, shape (n_samples, n_features + n_clfs*classes)
                 The prediction input samples for the meta clf.
    '''

    if keep_features:
        X_meta = X
    else:
        X_meta = None

    for clf in clfs:

        if X_meta is None:
            if drop_first:
                X_meta = clf.predict_proba(X)
            else:
                X_meta = clf.predict_proba(X)[:, 1:]
        else:
            if drop_first:
                y_ = clf.predict_proba(X)
            else:
                y_ = clf.predict_proba(X)[:, 1:]
            X_meta = np.hstack([X_meta, y_])

    return X_meta

这将允许您使用任何元分类器,但是对于像岭/套索/逻辑回归这样的线性模型,它将充当集成分类器的学习线性权重。像这样:

from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from xklearn.models import StackClassifier

X, y = make_classification(n_classes=2, n_features=4, n_samples=1000)

meta_clf = LogisticRegression(solver='lbfgs')
ensemble = [DecisionTreeClassifier(max_depth=1), 
            DecisionTreeClassifier(max_depth=5), 
            DecisionTreeClassifier(max_depth=10)]

stack_clf = StackClassifier(clfs=ensemble, meta_clf=meta_clf)
stack_clf.fit(X, y)

print('Weights:', stack_clf.meta_clf.coef_[0],' Bias: ', stack_clf.meta_clf.intercept_)

输出:

Weights: [0.50017775 2.2626092  6.30510687]  Bias:  [-4.82988374]