我从通用 TensorFlow 示例开始。
为了对我的数据进行分类,我需要softmax在最后一层使用多个标签(最好是多个分类器),因为我的数据带有多个独立的标签(概率之和不是 1)。
具体在retrain.py这些行中add_final_training_ops()添加最终张量
final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
和这里
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
logits, ground_truth_input)
TensorFlow 中是否已经有通用分类器?如果不是,如何实现多级分类?
add_final_training_ops()来自tensorflow/examples/image_retraining/retrain.py:
def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor):
with tf.name_scope('input'):
bottleneck_input = tf.placeholder_with_default(
bottleneck_tensor, shape=[None, BOTTLENECK_TENSOR_SIZE],
name='BottleneckInputPlaceholder')
ground_truth_input = tf.placeholder(tf.float32,
[None, class_count],
name='GroundTruthInput')
layer_name = 'final_training_ops'
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
layer_weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, class_count], stddev=0.001), name='final_weights')
variable_summaries(layer_weights)
with tf.name_scope('biases'):
layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
variable_summaries(layer_biases)
with tf.name_scope('Wx_plus_b'):
logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases
tf.summary.histogram('pre_activations', logits)
final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
tf.summary.histogram('activations', final_tensor)
with tf.name_scope('cross_entropy'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
logits, ground_truth_input)
with tf.name_scope('total'):
cross_entropy_mean = tf.reduce_mean(cross_entropy)
tf.summary.scalar('cross_entropy', cross_entropy_mean)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(
cross_entropy_mean)
return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
final_tensor)
即使在添加sigmoid分类器和重新训练之后,Tensorboard 仍然显示softmax:
