我正在使用 keras 库来构建卷积神经网络模型和 tensorflow 作为后端,所以我想做的是在一个时间点训练模型然后保存该模型并再次使用该训练模型来训练自己以提高准确性. 那么有可能那我该怎么办?
一次训练一半模型,另一次训练另一个
数据挖掘
喀拉斯
张量流
2022-02-19 23:32:54
1个回答
您可以在训练期间保存一个 keras 模型,然后再次加载它。要保存模型,您可以使用 json 格式执行此操作,然后要保存权重,您可以使用回调执行此操作,如下所示:
让我们做一些随机模型,
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
然后我们可以保存我们自己创建的模型
# Save the model
model_json = model.to_json()
with open("weights/model.json", "w") as json_file:
json_file.write(model_json)
我们可以使用回调来保存某个给定检查点的权重。在此示例中,每次我们获得更好的模型性能时都会保存它们。
# Save the weights using a checkpoint.
filepath="weights/weights-improvement-{epoch:02d}-{val_acc:.2f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_list = [checkpoint]
epochs = 4
batch_size = 128
# Fit the model weights.
model.fit(x_train_reshaped, y_train_binary,
batch_size=batch_size,
epochs=epochs,
verbose=1,
callbacks=callbacks_list,
validation_data=(x_test_reshaped, y_test_binary))
然后我们可以在未来使用加载模型和权重
# load model saved as a json and create model
json_file = open('weights/model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("weights/weights-improvement-04-0.99.hdf5")
print("Loaded model from disk")
# evaluate loaded model on test data
#loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
predictions = loaded_model.predict_classes(x_test_reshaped[0:10], verbose=0)
show_imgs(x_test[0:10])
print('Predicted classes: ', predictions)
一旦你加载了权重,你就可以通过再次调用 fit 函数来恢复训练
epochs = 4
batch_size = 128
# Fit the model weights.
loaded_model.fit(x_train_reshaped, y_train_binary,
batch_size=batch_size,
epochs=epochs,
verbose=1,
callbacks=callbacks_list,
validation_data=(x_test_reshaped, y_test_binary))
这将再进行 4 次训练。