我正在使用 CNN(改编自网络上的一些链接)进行图像分类任务。大约有 8000 张尺寸为 128x128 的图像。它们属于 13 个不同的类别。以下是model.summary()) 的输出:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
batch_normalization_1 (Batch (None, 128, 128, 3) 12
_________________________________________________________________
conv2d_1 (Conv2D) (None, 128, 128, 32) 896
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 64, 64, 32) 0
_________________________________________________________________
batch_normalization_2 (Batch (None, 64, 64, 32) 128
_________________________________________________________________
conv2d_2 (Conv2D) (None, 64, 64, 64) 18496
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 32, 32, 64) 0
_________________________________________________________________
batch_normalization_3 (Batch (None, 32, 32, 64) 256
_________________________________________________________________
conv2d_3 (Conv2D) (None, 32, 32, 128) 73856
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 16, 16, 128) 0
_________________________________________________________________
batch_normalization_4 (Batch (None, 16, 16, 128) 512
_________________________________________________________________
conv2d_4 (Conv2D) (None, 16, 16, 64) 73792
_________________________________________________________________
global_average_pooling2d_1 ( (None, 64) 0
_________________________________________________________________
dense_1 (Dense) (None, 13) 845
=================================================================
Total params: 168,793
Trainable params: 168,339
Non-trainable params: 454
如何分析此模型摘要以及如何改进此模型?