我有 1000 张 28*28 分辨率的图像。我将这 1000 张图像转换为numpy数组并形成一个大小为 (1000,28,28) 的新数组。因此,在使用 创建卷积层时Keras,输入形状(X 值)指定为 (1000,28,28),输出形状(Y 值)指定为 (1000,10)。因为我有 1000 个示例作为输入和 10 个类别的输出。
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',kernel_initializer='he_normal',input_shape=(1000,28,28)))
.
.
.
model.fit(train_x,train_y,batch_size=32,epochs=10,verbose=1)
因此,在使用fit函数时,它显示ValueError: Error when checking input: expected conv2d_1_input to have 4 dimensions, but got array with shape (1000, 28, 28)为错误。如何为CNN.
代码:
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',kernel_initializer='he_normal',input_shape=(4132,28,28)))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(Dropout(0.4))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(10, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,optimizer=keras.optimizers.Adam(),metrics=['accuracy'])
model.summary()
train_x = numpy.array([train_x])
model.fit(train_x,train_y,batch_size=32,epochs=10,verbose=1)