我正在尝试将arctan2功能添加到 Keras 模型的末尾,但看起来它甚至没有接近局部最小值。Add()这是我使用本机Keras 函数而不是 arctan2 函数的荒谬但最小的工作代码:
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal as ss
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv1D, Add
import tensorflow as tf
kernel_size = 64
epochs = 1000
def atan2(tensors):
Q = tensors[0]
I = tensors[1]
return tf.math.atan2(Q, I)
def atan2_output_shape(input_shapes):
return tuple(input_shapes[0])
atan2_layer = Lambda(atan2, output_shape=atan2_output_shape)
## Data generation for training
x_train = np.random.randn(1024, 512)
t = np.linspace(0, x_train.shape[1], x_train.shape[1], endpoint=False)
sine = np.sin(2*np.pi*t/32)
cosine = np.cos(2*np.pi*t/32)
x_I = np.multiply(x_train, cosine)
x_Q = np.multiply(x_train, sine)
b_I = ss.tukey(kernel_size)
b_Q = ss.tukey(kernel_size)
x_I_filt = np.array([np.convolve(b_I, x_I_i, mode='valid') for x_I_i in x_I])
x_Q_filt = np.array([np.convolve(b_Q, x_Q_i, mode='valid') for x_Q_i in x_Q])
y_train = x_Q_filt + x_I_filt
# y_train = x_Q_filt * x_I_filt
# y_train = np.arctan2(x_Q_filt, x_I_filt)
x_I = np.expand_dims(x_I, axis=2)
x_Q = np.expand_dims(x_Q, axis=2)
y_train = np.expand_dims(y_train, axis=2)
## Keras model
input_I = Input(shape=(x_I.shape[1], 1))
input_Q = Input(shape=(x_Q.shape[1], 1))
conv_I_1D = Conv1D(filters=1, kernel_size=kernel_size, activation=None, padding='valid', use_bias=False)(input_I)
conv_Q_1D = Conv1D(filters=1, kernel_size=kernel_size, activation=None, padding='valid', use_bias=False)(input_Q)
out_I_Q = Add()([conv_I_1D, conv_Q_1D])
# out_I_Q = Multiply()([conv_I_1D, conv_Q_1D])
# out_I_Q = atan2_layer([conv_Q_1D, conv_I_1D])
model_1D = Model([input_I, input_Q], out_I_Q)
model_1D.compile(optimizer='sgd', loss='mean_squared_error')
history_1D = model_1D.fit([x_I, x_Q], y_train, epochs=epochs, verbose=0)
在 100 个 epoch 之后,我得到了几乎完美的初始过滤器内核:
plt.semilogy(history_1D.history['loss'])
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.show()
它也适用于Multiply()功能。但是如果我替换y_traintoy_train = np.arctan2(x_Q_filt, x_I_filt)和out_I_Qtoout_I_Q = atan2_layer([conv_Q_1D, conv_I_1D])我会得到这个悲伤的损失图:
我什至将权重初始化为应有的值,但在运行之前有一点偏移model_1D.fit(...)。b_I并且b_Q是相同的数组。
offset = 1e-5
array_for_I_weights = np.array(model_1D.layers[2].get_weights())
array_for_I_weights[0,:,0,0] = list(b_I+offset)
model_1D.layers[2].set_weights(array_for_I_weights)
model_1D.layers[3].set_weights(array_for_I_weights)
但是,如果我更改offset为,1e-4我会得到这个损失图:
它只会在一个时代之后变得更糟。如果将 arctan2 函数放在 Keras 模型中,它有什么问题?为什么模型从好的最小值跳出来?也许我应该使用另一个自定义损失/度量函数?
更改优化器类型根本无济于事。我正在使用 tensorflow 2.0 和 Keras 2.2.5。

