我有可变序列长度的时间序列数据。所以像:
date value label
2020-01-01 2 0 # first input time series
2020-01-02 1 0 # first input time series
2020-01-03 1 0 # first input time series
2020-01-01 3 1 # second input time series
2020-01-03 1 1 # second input time series
[samples, time_steps, n_features]当time_steps不一致时,如何创建形状的训练数据集(numpy数组) ?
附加信息:将要训练的模型LSTM能够处理可变输入长度。