可能重复:
如何引用回归模型的系数标准误差?
如果我有一个数据集:
data = data.frame(xdata = 1:10,ydata = 6:15)
我运行线性回归:
fit = lm(ydata~.,data = data)
out = summary(fit)
Call:
lm(formula = ydata ~ ., data = data)
Residuals:
Min 1Q Median 3Q Max
-5.661e-16 -1.157e-16 4.273e-17 2.153e-16 4.167e-16
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.000e+00 2.458e-16 2.035e+16 <2e-16 ***
xdata 1.000e+00 3.961e-17 2.525e+16 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.598e-16 on 8 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 6.374e+32 on 1 and 8 DF, p-value: < 2.2e-16
如何从拟合或拟合中提取回归系数的标准误差?我似乎无法弄清楚。谢谢!