3 个概率分布的 Jensen-Shannon 散度计算:可以吗?

机器算法验证 距离函数 信息论
2022-02-27 01:16:48

我想计算他遵循 3 个分布的詹森-香农散度。下面的计算是否正确?(我遵循了维基百科的 JSD 公式):

P1  a:1/2  b:1/2    c:0
P2  a:0    b:1/10   c:9/10
P3  a:1/3  b:1/3    c:1/3
All distributions have equal weights, ie 1/3.

JSD(P1, P2, P3) = H[(1/6, 1/6, 0) + (0, 1/30, 9/30) + (1/9,1/9,1/9)] - 
                 [1/3*H[(1/2,1/2,0)] + 1/3*H[(0,1/10,9/10)] + 1/3*H[(1/3,1/3,1/3)]]

JSD(P1, P2, P3) = H[(1/6, 1/5, 9/30)] - [0 + 1/3*0.693 + 0] = 1.098-0.693 = 0.867

提前致谢...

编辑这里有一些简单的脏 Python 代码也可以计算:

    def entropy(prob_dist, base=math.e):
        return -sum([p * math.log(p,base) for p in prob_dist if p != 0])

    def jsd(prob_dists, base=math.e):
        weight = 1/len(prob_dists) #all same weight
        js_left = [0,0,0]
        js_right = 0    
        for pd in prob_dists:
            js_left[0] += pd[0]*weight
            js_left[1] += pd[1]*weight
            js_left[2] += pd[2]*weight
            js_right += weight*entropy(pd,base)
        return entropy(js_left)-js_right

usage: jsd([[1/2,1/2,0],[0,1/10,9/10],[1/3,1/3,1/3]])
4个回答

混合分布有误。它应该是 而不是不等于 1。熵(自然对数)是 1.084503 . 您的其他熵项是错误的。(5/18,28/90,37/90)(1/6,1/5,9/30)

我将给出一个计算的细节:

H(1/2,1/2,0)=1/2log(1/2)1/2log(1/2)+0=0.6931472

以类似的方式,其他项为 0.325083 和 1.098612。所以最终结果是 1.084503 - (0.6931472 + 0.325083 + 1.098612)/3 = 0.378889

Python:

import numpy as np
# @author: jonathanfriedman

def jsd(x,y): #Jensen-shannon divergence
    import warnings
    warnings.filterwarnings("ignore", category = RuntimeWarning)
    x = np.array(x)
    y = np.array(y)
    d1 = x*np.log2(2*x/(x+y))
    d2 = y*np.log2(2*y/(x+y))
    d1[np.isnan(d1)] = 0
    d2[np.isnan(d2)] = 0
    d = 0.5*np.sum(d1+d2)    
    return d

jsd(np.array([0.5,0.5,0]),np.array([0,0.1,0.9]))

爪哇:

/**
 * Returns the Jensen-Shannon divergence.
 */
public static double jensenShannonDivergence(final double[] p1,
        final double[] p2) {
    assert (p1.length == p2.length);
    double[] average = new double[p1.length];
    for (int i = 0; i < p1.length; ++i) {
        average[i] += (p1[i] + p2[i]) / 2;
    }
    return (klDivergence(p1, average) + klDivergence(p2, average)) / 2;
}

public static final double log2 = Math.log(2);

/**
 * Returns the KL divergence, K(p1 || p2).
 * 
 * The log is w.r.t. base 2.
 * <p>
 * *Note*: If any value in <tt>p2</tt> is <tt>0.0</tt> then the
 * KL-divergence is <tt>infinite</tt>. Limin changes it to zero instead of
 * infinite.
 */
public static double klDivergence(final double[] p1, final double[] p2) {
    double klDiv = 0.0;
    for (int i = 0; i < p1.length; ++i) {
        if (p1[i] == 0) {
            continue;
        }
        if (p2[i] == 0.0) {
            continue;
        } // Limin

        klDiv += p1[i] * Math.log(p1[i] / p2[i]);
    }
    return klDiv / log2; // moved this division out of the loop -DM
}

您提供了维基百科参考。在这里,我给出了具有多个概率分布的 Jensen-Shannon 散度的完整表达式:

JSmetric(p1,...,pm)=H(p1+...+pmm)j=1mH(pj)m

原始问题发布时没有多分布 JS 散度的数学表达式,这导致对所提供的计算的理解混乱。此外,使用了术语weight,这再次导致您如何选择适当的乘法权重的混淆。上面的表述澄清了这些混淆。从上面的表达式可以清楚地看出,权重是根据分布的数量自动选择的。

两个任意长度序列的 JS 发散的 Scala 版本:

def entropy(dist: WrappedArray[Double]) = -(dist.filter(_ != 0.0).map(i => i * Math.log(i)).sum)


val jsDivergence = (dist1: WrappedArray[Double], dist2: WrappedArray[Double]) => {
    val weights = 0.5 //since we are considering inly two sequences
    val left = dist1.zip(dist2).map(x => x._1 * weights + x._2 * weights)
    // println(left)
    // println(entropy(left))
    val right = (entropy(dist1) * weights) + (entropy(dist2) * weights)
    // println(right)
    entropy(left) - right

}

jsDivergence(Array(0.5,0.5,0), Array(0,0.1,0.9))

res0: Double = 0.557978817900054

使用问题编辑部分中的代码交叉检查此答案:

jsd([np.array([0.5,0.5,0]), np.array([0,0.1,0.9])])
0.55797881790005399